BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37963544)

  • 1. Structural and functional multilayer network analysis in restless legs syndrome patients.
    Park KM; Kim KT; Lee DA; Motamedi GK; Cho YW
    J Sleep Res; 2024 May; 33(3):e14104. PubMed ID: 37963544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined resting state functional magnetic resonance imaging and diffusion tensor imaging study in patients with idiopathic restless legs syndrome.
    Zhuo Y; Wu Y; Xu Y; Lu L; Li T; Wang X; Li K
    Sleep Med; 2017 Oct; 38():96-103. PubMed ID: 29031764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional connectivity alternation of the thalamus in restless legs syndrome patients during the asymptomatic period: a resting-state connectivity study using functional magnetic resonance imaging.
    Ku J; Cho YW; Lee YS; Moon HJ; Chang H; Earley CJ; Allen RP
    Sleep Med; 2014 Mar; 15(3):289-94. PubMed ID: 24555993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the changed hubs and corresponding functional connectivity in idiopathic restless legs syndrome.
    Liu C; Wang J; Hou Y; Qi Z; Wang L; Zhan S; Wang R; Wang Y
    Sleep Med; 2018 May; 45():132-139. PubMed ID: 29680421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural brain connectivity in patients with restless legs syndrome: a diffusion tensor imaging study.
    Park KM; Kim KT; Lee DA; Cho YW
    Sleep; 2022 Jul; 45(7):. PubMed ID: 35485481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal Magnetic Resonance Imaging reveals alterations of sensorimotor circuits in restless legs syndrome.
    Stefani A; Mitterling T; Heidbreder A; Steiger R; Kremser C; Frauscher B; Gizewski ER; Poewe W; Högl B; Scherfler C
    Sleep; 2019 Dec; 42(12):. PubMed ID: 31555830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Default mode network disturbances in restless legs syndrome/Willis-Ekbom disease.
    Ku J; Lee YS; Chang H; Earley CJ; Allen RP; Cho YW
    Sleep Med; 2016 Jul; 23():6-11. PubMed ID: 27692278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resting-state connectivity and the effects of treatment in restless legs syndrome.
    Lee YS; Ku J; Kim KT; Chang H; Earley CJ; Allen RP; Cho YW
    Sleep Med; 2020 Mar; 67():33-38. PubMed ID: 31887606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayer network changes in patients with migraine.
    Kim J; Lee DA; Lee HJ; Park KM
    Brain Behav; 2023 Dec; 13(12):e3316. PubMed ID: 37941321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain imaging and networks in restless legs syndrome.
    Rizzo G; Li X; Galantucci S; Filippi M; Cho YW
    Sleep Med; 2017 Mar; 31():39-48. PubMed ID: 27838239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The variation of motor-related brain structure and its relation to abnormal motor behaviors in end-stage renal disease patients with restless legs syndrome.
    Mu J; Liu X; Ma S; Chen T; Ma X; Li P; Ding D; Liu J; Zhang M
    Brain Imaging Behav; 2020 Feb; 14(1):42-50. PubMed ID: 30259290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glymphatic system dysfunction in restless legs syndrome: evidenced by diffusion tensor imaging along the perivascular space.
    Park KM; Kim KT; Lee DA; Motamedi GK; Cho YW
    Sleep; 2023 Nov; 46(11):. PubMed ID: 37702251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered cortical gray matter volume and functional connectivity after transcutaneous spinal cord direct current stimulation in idiopathic restless legs syndrome.
    Wang L; Liu C; Hou Y; Zhan S; Zhang Z; Wang J; Wang Y
    Sleep Med; 2020 Oct; 74():254-261. PubMed ID: 32862009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of increased intrinsic functional connectivity in patients with restless legs syndrome are associated with attentional control of sensory inputs.
    Gorges M; Rosskopf J; Müller HP; Lindemann K; Hornyak M; Kassubek J
    Neurosci Lett; 2016 Mar; 617():264-9. PubMed ID: 26921454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in Salience Network Functional Connectivity in Individuals with Restless Legs Syndrome.
    Ku J; Lee YS; Kim KT; Chang H; Cho YW
    Sci Rep; 2020 May; 10(1):7643. PubMed ID: 32377013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping intrinsic functional brain changes and repetitive transcranial magnetic stimulation neuromodulation in idiopathic restless legs syndrome: a resting-state functional magnetic resonance imaging study.
    Liu C; Dai Z; Zhang R; Zhang M; Hou Y; Qi Z; Huang Z; Lin Y; Zhan S; He Y; Wang Y
    Sleep Med; 2015 Jun; 16(6):785-91. PubMed ID: 25959094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroimaging Applications in Restless Legs Syndrome.
    Rizzo G; Plazzi G
    Int Rev Neurobiol; 2018; 143():31-64. PubMed ID: 30473197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diurnal variation of default mode network in patients with restless legs syndrome.
    Ku J; Lee YS; Chang HW; Earley CJ; Allen RP; Cho YW
    Sleep Med; 2018 Jan; 41():1-8. PubMed ID: 29425573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal resting state functional connectivity in patients with chronic fatigue syndrome: an arterial spin-labeling fMRI study.
    Boissoneault J; Letzen J; Lai S; O'Shea A; Craggs J; Robinson ME; Staud R
    Magn Reson Imaging; 2016 May; 34(4):603-8. PubMed ID: 26708036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of gray matter alterations in migraine and restless legs syndrome.
    Yang FC; Chou KH; Lee PL; Yin JH; Chen SY; Kao HW; Sung YF; Chou CH; Tsai CK; Tsai CL; Lin CP; Lee JT
    Ann Clin Transl Neurol; 2019 Jan; 6(1):57-67. PubMed ID: 30656184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.