BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37963850)

  • 1. Colorimetric Detection of HER2-Overexpressing-Cancer-Derived Exosomes in Mouse Urine Using Magnetic-Polydiacetylene Nanoparticles.
    Kim R; Mun B; Lim S; Park C; Kim J; Lim J; Jeong H; Son HY; Rho HW; Lim EK; Haam S
    Small; 2024 Mar; 20(13):e2307262. PubMed ID: 37963850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polydiacetylene (PDA) Liposome-Based Immunosensor for the Detection of Exosomes.
    Kim C; Lee K
    Biomacromolecules; 2019 Sep; 20(9):3392-3398. PubMed ID: 31385692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polydiacetylene-based aptasensors for rapid and specific colorimetric detection of malignant exosomes.
    Jung YK; Son MH
    Talanta; 2024 Feb; 268(Pt 1):125342. PubMed ID: 37918246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aptamer-Conjugated Polydiacetylene Colorimetric Paper Chip for the Detection of
    Zhou C; You T; Jang H; Ryu H; Lee ES; Oh MH; Huh YS; Kim SM; Jeon TJ
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-signal optical detection of Lead(II) ions (Pb
    Sagong HY; Son MH; Park SW; Kim JS; Li T; Jung YK
    Anal Chim Acta; 2022 Oct; 1230():340403. PubMed ID: 36192069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes.
    Xu L; Chopdat R; Li D; Al-Jamal KT
    Biosens Bioelectron; 2020 Dec; 169():112576. PubMed ID: 32919211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immuno-magnetophoresis-based microfluidic chip to isolate and detect HER2-Positive cancer-derived exosomes via multiple separation.
    Mun B; Kim R; Jeong H; Kang B; Kim J; Son HY; Lim J; Rho HW; Lim EK; Haam S
    Biosens Bioelectron; 2023 Nov; 239():115592. PubMed ID: 37603987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures and strategies for enhanced sensitivity of polydiacetylene(PDA) based biosensor platforms.
    Kim C; Hong C; Lee K
    Biosens Bioelectron; 2021 Jun; 181():113120. PubMed ID: 33714858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Polydiacetylene-Coated Superparamagnetic Magnetite Biosensor for Colorimetric Detection of Biomarkers.
    Chan T; Verma MS; Gu FX
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2628-33. PubMed ID: 26353474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state colorimetric polydiacetylene liposome biosensor sensitized by gold nanoparticles.
    Kim J; Moon BS; Hwang E; Shaban S; Lee W; Pyun DG; Lee DH; Kim DH
    Analyst; 2021 Mar; 146(5):1682-1688. PubMed ID: 33449063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naked-Eye Detection of Ethylene Using Thiol-Functionalized Polydiacetylene-Based Flexible Sensors.
    Nguyen LH; Oveissi F; Chandrawati R; Dehghani F; Naficy S
    ACS Sens; 2020 Jul; 5(7):1921-1928. PubMed ID: 32551585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Polydiacetylene-Based Colorimetric Sensor as an Active Use-By Date for Plant-Based Milk Alternatives.
    Weston M; Kuchel RP; Chandrawati R
    Macromol Rapid Commun; 2020 Sep; 41(18):e2000172. PubMed ID: 32459057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital analysis of polydiacetylene quality tags for contactless monitoring of milk.
    Weston M; Kuchel RP; Chandrawati R
    Anal Chim Acta; 2021 Mar; 1148():238190. PubMed ID: 33516381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric Detection of the SARS-CoV-2 Virus (COVID-19) in Artificial Saliva Using Polydiacetylene Paper Strips.
    Prainito CD; Eshun G; Osonga FJ; Isika D; Centeno C; Sadik OA
    Biosensors (Basel); 2022 Sep; 12(10):. PubMed ID: 36290942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Detection and Analysis of Exosomes Using Surface-Enhanced Raman Scattering Gold Nanorods and a Miniaturized Device.
    Kwizera EA; O'Connor R; Vinduska V; Williams M; Butch ER; Snyder SE; Chen X; Huang X
    Theranostics; 2018; 8(10):2722-2738. PubMed ID: 29774071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-functionalization with phosphate and carboxylate on polydiacetylene for colorimetric detection of calcium ions in serum.
    Oh J; Eom MS; Han MS
    Analyst; 2019 Nov; 144(23):7064-7070. PubMed ID: 31660545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric detection of alkaline phosphatase activity based on pyridoxal phosphate-induced chromatic switch of polydiacetylene nano-liposomes.
    Wang DE; You S; Huo W; Han X; Xu H
    Mikrochim Acta; 2022 Jan; 189(2):70. PubMed ID: 35067757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptamer biosensors for label-free colorimetric detection of human IgE based on polydiacetylene (PDA) supramolecules.
    Kim JP; Park CH; Sim SJ
    J Nanosci Nanotechnol; 2011 May; 11(5):4269-74. PubMed ID: 21780440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free visible colorimetric biosensor for detection of multiple pathogenic bacteria based on engineered polydiacetylene liposomes.
    Zhou J; Duan M; Huang D; Shao H; Zhou Y; Fan Y
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1684-1694. PubMed ID: 34500167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polydiacetylene rhodamine
    Kaewtong C; Wanno B; Rakrai W; Saenkham A; Sriphalang S; Pattavarakorn D; Tuntulani T; Pulpoka B
    Environ Technol; 2024 Mar; 45(7):1290-1299. PubMed ID: 36315008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.