These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37964229)

  • 1. Comparison of 2D, 2.5D, and 3D segmentation networks for maxillary sinuses and lesions in CBCT images.
    Yoo YS; Kim D; Yang S; Kang SR; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ
    BMC Oral Health; 2023 Nov; 23(1):866. PubMed ID: 37964229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images.
    Choi H; Jeon KJ; Kim YH; Ha EG; Lee C; Han SS
    Sci Rep; 2022 Aug; 12(1):14009. PubMed ID: 35978086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images.
    Morgan N; Van Gerven A; Smolders A; de Faria Vasconcelos K; Willems H; Jacobs R
    Sci Rep; 2022 May; 12(1):7523. PubMed ID: 35525857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based automatic segmentation of bone graft material after maxillary sinus augmentation.
    Tao B; Xu J; Gao J; He S; Jiang S; Wang F; Chen X; Wu Y
    Clin Oral Implants Res; 2024 Aug; 35(8):964-972. PubMed ID: 38033189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic maxillary sinus segmentation and pathology classification on cone-beam computed tomographic images using deep learning.
    Altun O; Özen DÇ; Duman ŞB; Dedeoğlu N; Bayrakdar İŞ; Eşer G; Çelik Ö; Sümbüllü MA; Syed AZ
    BMC Oral Health; 2024 Oct; 24(1):1208. PubMed ID: 39390490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of convolutional neural network training strategies for cone-beam CT image segmentation.
    Minnema J; Wolff J; Koivisto J; Lucka F; Batenburg KJ; Forouzanfar T; van Eijnatten M
    Comput Methods Programs Biomed; 2021 Aug; 207():106192. PubMed ID: 34062493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence system for automatic maxillary sinus segmentation on cone beam computed tomography images.
    Bayrakdar IS; Elfayome NS; Hussien RA; Gulsen IT; Kuran A; Gunes I; Al-Badr A; Celik O; Orhan K
    Dentomaxillofac Radiol; 2024 Apr; 53(4):256-266. PubMed ID: 38502963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone Volume Assessment Around Dental Implants After Open Maxillary Sinus Elevation Surgery: A Quantitative Approach to CBCT Images.
    Lewin S; Riben C; Thor A; Öhman-Mägi C
    Int J Oral Maxillofac Implants; 2019; 34(2):489–498. PubMed ID: 30716145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning.
    Wang H; Minnema J; Batenburg KJ; Forouzanfar T; Hu FJ; Wu G
    J Dent Res; 2021 Aug; 100(9):943-949. PubMed ID: 33783247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic detection of posterior superior alveolar artery in dental cone-beam CT images using a deeply supervised multi-scale 3D network.
    Park JA; Kim D; Yang S; Kang JH; Kim JE; Huh KH; Lee SS; Yi WJ; Heo MS
    Dentomaxillofac Radiol; 2024 Jan; 53(1):22-31. PubMed ID: 38214942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency and type of incidentally detected radiodensities in the maxillary sinus: a retrospective analysis using cone beam computed tomography (CBCT).
    Kawai T; Tanaka R; Yeung AWK; von Arx T; Bornstein MM
    Clin Oral Investig; 2019 Mar; 23(3):1091-1099. PubMed ID: 29951976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network.
    Jeoun BS; Yang S; Lee SJ; Kim TI; Kim JM; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ
    Sci Rep; 2022 Aug; 12(1):13460. PubMed ID: 35931733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic detection and segmentation of morphological changes of the maxillary sinus mucosa on cone-beam computed tomography images using a three-dimensional convolutional neural network.
    Hung KF; Ai QYH; King AD; Bornstein MM; Wong LM; Leung YY
    Clin Oral Investig; 2022 May; 26(5):3987-3998. PubMed ID: 35032193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep cross-modality (MR-CT) educed distillation learning for cone beam CT lung tumor segmentation.
    Jiang J; Riyahi Alam S; Chen I; Zhang P; Rimner A; Deasy JO; Veeraraghavan H
    Med Phys; 2021 Jul; 48(7):3702-3713. PubMed ID: 33905558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visibility, location, and morphology of the primary maxillary sinus ostium and presence of accessory ostia: a retrospective analysis using cone beam computed tomography (CBCT).
    Yeung AWK; Colsoul N; Montalvao C; Hung K; Jacobs R; Bornstein MM
    Clin Oral Investig; 2019 Nov; 23(11):3977-3986. PubMed ID: 30737619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT.
    Yeshua T; Ladyzhensky S; Abu-Nasser A; Abdalla-Aslan R; Boharon T; Itzhak-Pur A; Alexander A; Chaurasia A; Cohen A; Sosna J; Leichter I; Nadler C
    Eur Radiol; 2023 Nov; 33(11):7507-7518. PubMed ID: 37191921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implant-guided volumetric analysis of edentulous maxillary bone with cone-beam computerized tomography scan. Maxillary sinus pneumatization classification.
    Tolstunov L; Thai D; Arellano L
    J Oral Implantol; 2012 Aug; 38(4):377-90. PubMed ID: 22913308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal maxillary sinus diagnosing on CBCT images via object detection and 'straight-forward' classification deep learning strategy.
    Zeng P; Song R; Lin Y; Li H; Chen S; Shi M; Cai G; Gong Z; Huang K; Chen Z
    J Oral Rehabil; 2023 Dec; 50(12):1465-1480. PubMed ID: 37665121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of the maxillary sinus on cone beam computed tomographic images with U-Net deep learning model.
    Ozturk B; Taspinar YS; Koklu M; Tassoker M
    Eur Arch Otorhinolaryngol; 2024 Nov; 281(11):6111-6121. PubMed ID: 39083060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.