BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37964324)

  • 1. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review.
    Lomascolo A; Odinot E; Villeneuve P; Lecomte J
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):173. PubMed ID: 37964324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Phenolic Acid Decarboxylase from the Brown-Rot Fungus
    Odinot E; Bisotto-Mignot A; Frezouls T; Bissaro B; Navarro D; Record E; Cadoret F; Doan A; Chevret D; Fine F; Lomascolo A
    Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Two-Step Bioconversion Process for Canolol Production from Rapeseed Meal Combining an Aspergillus niger Feruloyl Esterase and the Fungus Neolentinus lepideus.
    Odinot E; Fine F; Sigoillot JC; Navarro D; Laguna O; Bisotto A; Peyronnet C; Ginies C; Lecomte J; Faulds CB; Lomascolo A
    Microorganisms; 2017 Oct; 5(4):. PubMed ID: 29036919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives.
    Hu H; Li L; Ding S
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5071-81. PubMed ID: 25547838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids.
    Terpinc P; Polak T; Segatin N; Hanzlowsky A; Ulrih NP; Abramovič H
    Food Chem; 2011 Sep; 128(1):62-9. PubMed ID: 25214330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylphenol Formation by Lactobacillus plantarum: Identification of the Enzyme Involved in the Reduction of Vinylphenols.
    Santamaría L; Reverón I; de Felipe FL; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29934329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.
    van Beek S; Priest FG
    Appl Environ Microbiol; 2000 Dec; 66(12):5322-8. PubMed ID: 11097909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High yield production of cyanidin-derived pyranoanthocyanins using 4-vinylphenol and 4-vinylguaiacol as cofactors.
    Miyagusuku-Cruzado G; Voss DM; Ortiz-Santiago TN; Cheng Y; Giusti MM
    Food Chem; 2023 Nov; 427():136705. PubMed ID: 37406449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines.
    Schwarz M; Wabnitz TC; Winterhalter P
    J Agric Food Chem; 2003 Jun; 51(12):3682-7. PubMed ID: 12769545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.
    Lee H; Park J; Jung C; Han D; Seo J; Ahn JH; Chong Y; Hur HG
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9473-81. PubMed ID: 26059194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing p-Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production?
    Flourat AL; Combes J; Bailly-Maitre-Grand C; Magnien K; Haudrechy A; Renault JH; Allais F
    ChemSusChem; 2021 Jan; 14(1):118-129. PubMed ID: 33058548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring Hydroxycinnamic Acid Decarboxylation by Lactic Acid Bacteria Using High-Throughput UV-Vis Spectroscopy.
    Miyagusuku-Cruzado G; García-Cano I; Rocha-Mendoza D; Jiménez-Flores R; Giusti MM
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32660090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of representative cider yeasts and bacteria for volatile phenol-production ability.
    Buron N; Coton M; Desmarais C; Ledauphin J; Guichard H; Barillier D; Coton E
    Food Microbiol; 2011 Oct; 28(7):1243-51. PubMed ID: 21839372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis.
    Schopp LM; Lee J; Osborne JP; Chescheir SC; Edwards CG
    J Agric Food Chem; 2013 Nov; 61(47):11610-7. PubMed ID: 24219184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of microwaves treatment of rapeseed on phenolic compounds and canolol content.
    Yang M; Zheng C; Zhou Q; Liu C; Li W; Huang F
    J Agric Food Chem; 2014 Feb; 62(8):1956-63. PubMed ID: 24476101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survey of enzyme activity responsible for phenolic off-flavour production by Dekkera and Brettanomyces yeast.
    Harris V; Ford CM; Jiranek V; Grbin PR
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1117-27. PubMed ID: 18839169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a second PAD1 in Brettanomyces bruxellensis LAMAP2480.
    González C; Godoy L; Ganga MA
    Antonie Van Leeuwenhoek; 2017 Feb; 110(2):291-296. PubMed ID: 27771809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T).
    Rodríguez H; Landete JM; Curiel JA; de Las Rivas B; Mancheño JM; Muñoz R
    J Agric Food Chem; 2008 May; 56(9):3068-72. PubMed ID: 18416556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered Pseudomonas putida KT2440.
    Williamson JJ; Bahrin N; Hardiman EM; Bugg TDH
    Biotechnol J; 2020 Jul; 15(7):e1900571. PubMed ID: 32488970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.
    Silva I; Campos FM; Hogg T; Couto JA
    J Appl Microbiol; 2011 Aug; 111(2):360-70. PubMed ID: 21575111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.