These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37964665)

  • 1. Grass veins are leaky pipes: vessel widening in grass leaves explain variation in stomatal conductance and vessel diameter among species.
    Ocheltree TW; Gleason SM
    New Phytol; 2024 Jan; 241(1):243-252. PubMed ID: 37964665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in stomatal conductance along grass blades reflect changes in leaf structure.
    Ocheltree TW; Nippert JB; Prasad PV
    Plant Cell Environ; 2012 Jun; 35(6):1040-9. PubMed ID: 22146058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities.
    Olson ME; Anfodillo T; Gleason SM; McCulloh KA
    New Phytol; 2021 Feb; 229(4):1877-1893. PubMed ID: 32984967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergent tip-to-base widening of water-conducting conduits in the tallest bryophytes.
    Bok ECPM; Brodribb TJ; Jordan GJ; Carriquí M
    Am J Bot; 2022 Feb; 109(2):322-332. PubMed ID: 34713894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.
    Xu Z; Zhou G
    J Exp Bot; 2008; 59(12):3317-25. PubMed ID: 18648104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.
    Ocheltree TW; Nippert JB; Prasad PV
    Plant Cell Environ; 2014 Jan; 37(1):132-9. PubMed ID: 23701708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species.
    Liu X; Liu H; Gleason SM; Goldstein G; Zhu S; He P; Hou H; Li R; Ye Q
    Tree Physiol; 2019 Oct; 39(10):1665-1674. PubMed ID: 31314105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.
    Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY
    Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constant theoretical conductance via changes in vessel diameter and number with height growth in Moringa oleifera.
    Echeverría A; Anfodillo T; Soriano D; Rosell JA; Olson ME
    J Exp Bot; 2019 Oct; 70(20):5765-5772. PubMed ID: 31328237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf hydraulic conductance is linked to leaf symmetry in bifacial, amphistomatic leaves of sunflower.
    Richardson F; Jordan GJ; Brodribb TJ
    J Exp Bot; 2020 May; 71(9):2808-2816. PubMed ID: 31970417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM).
    Sack L; Scoffoni C
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of sub-low temperature and drought stress on water transport and morphological anatomy of tomato plant].
    Xiao HJ; Li JQ; Wang JQ; DU QJ
    Ying Yong Sheng Tai Xue Bao; 2020 Aug; 31(8):2630-2636. PubMed ID: 34494785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.
    Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S
    Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in leaf anatomy determines temperature response of leaf hydraulic and mesophyll CO
    Sonawane BV; Koteyeva NK; Johnson DM; Cousins AB
    New Phytol; 2021 Jun; 230(5):1802-1814. PubMed ID: 33605441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat.
    Corso D; Delzon S; Lamarque LJ; Cochard H; Torres-Ruiz JM; King A; Brodribb T
    Plant Cell Environ; 2020 Apr; 43(4):854-865. PubMed ID: 31953855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.
    Hernandez MJ; Montes F; Ruiz F; Lopez G; Pita P
    Ann Bot; 2016 May; 117(6):1063-71. PubMed ID: 27052343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination.
    Flexas J; Scoffoni C; Gago J; Sack L
    J Exp Bot; 2013 Oct; 64(13):3965-81. PubMed ID: 24123453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydraulic architecture of an arborescent monocot: ontogeny-related adjustments in vessel size and leaf area compensate for increased resistance.
    Yang D; Zhang Y; Zhou D; Zhang YJ; Peng G; Tyree MT
    New Phytol; 2021 Jul; 231(1):273-284. PubMed ID: 33621370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens.
    Choat B; Medek DE; Stuart SA; Pasquet-Kok J; Egerton JJG; Salari H; Sack L; Ball MC
    New Phytol; 2011 Sep; 191(4):996-1005. PubMed ID: 21627664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.