These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3796478)

  • 21. A signal processing model of diagnostic x-ray scatter.
    Smith SW; Kruger RA
    Med Phys; 1986; 13(6):831-5. PubMed ID: 3796479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-ray scatter background signals in transmission radiography.
    Motz JW; Dick CE
    Med Phys; 1975; 2(5):259-67. PubMed ID: 1186632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Monte Carlo study of the energy spectra and transmission characteristics of scattered radiation from x-ray computed tomography.
    Platten DJ
    J Radiol Prot; 2014 Jun; 34(2):445-56. PubMed ID: 24894101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms.
    Moradi F; Khandaker MU; Alrefae T; Ramazanian H; Bradley DA
    Appl Radiat Isot; 2019 Apr; 146():120-126. PubMed ID: 30769172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo simulation of the scattered radiation distribution in diagnostic radiology.
    Boone JM; Seibert JA
    Med Phys; 1988; 15(5):713-20. PubMed ID: 3185407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photon scatter in portal images: accuracy of a fluence based pencil beam superposition algorithm.
    McCurdy BM; Pistorius S
    Med Phys; 2000 May; 27(5):913-22. PubMed ID: 10841394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scatter/primary in mammography: Monte Carlo validation.
    Boone JM; Cooper VN
    Med Phys; 2000 Aug; 27(8):1818-31. PubMed ID: 10984229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo calculation for microplanar beam radiography.
    Company FZ; Allen BJ; Mino C
    Australas Phys Eng Sci Med; 2000 Sep; 23(3):88-93. PubMed ID: 11210159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.
    Benmakhlouf H; Bouchard H; Fransson A; Andreo P
    Phys Med Biol; 2011 Nov; 56(22):7179-204. PubMed ID: 22024474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SCATTERED X-RAY ENERGY DATA FROM INTEGRATED MULTI-FILTER PERSONAL DOSEMETERS WORN BY INTERVENTIONAL RADIOLOGY STAFF.
    Mori H
    Radiat Prot Dosimetry; 2016 Nov; 171(3):365-369. PubMed ID: 26323972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculation of backscatter factors for diagnostic radiology using Monte Carlo methods.
    Petoussi-Henss N; Zankl M; Drexler G; Panzer W; Regulla D
    Phys Med Biol; 1998 Aug; 43(8):2237-50. PubMed ID: 9725601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The Difference in Backscatter Factors of Diagnostic X-rays by the Difference in the Scattering Medium and in the Objective Dose].
    Kato H; Sakai K; Uchiyama M; Suzuki K
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2016; 72(10):1007-1014. PubMed ID: 27760900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2007 Mar; 52(6):1595-615. PubMed ID: 17327651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. X-ray scatter in megavoltage transmission radiography: physical characteristics and influence on image quality.
    Jaffray DA; Battista JJ; Fenster A; Munro P
    Med Phys; 1994 Jan; 21(1):45-60. PubMed ID: 8164588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of absorbed dose in mammography: monte carlo simulation studies.
    Doi K; Chan HP
    Radiology; 1980 Apr; 135(1):199-208. PubMed ID: 7360961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of phantom type, beam quality, field size and field position on X-ray scattering simulated using Monte Carlo techniques.
    McVey G
    Br J Radiol; 2006 Feb; 79(938):130-41. PubMed ID: 16489194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo studies of the exit photon spectra and dose to a metal/phosphor portal imaging screen.
    Yeboah C; Pistorius S
    Med Phys; 2000 Feb; 27(2):330-9. PubMed ID: 10718136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo evaluations of the absorbed dose and quality dependence of AL2O3 in radiotherapy photon beams.
    Chen SW; Wang XT; Chen LX; Tang Q; Liu XW
    Med Phys; 2009 Oct; 36(10):4421-4. PubMed ID: 19928072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.