BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37964795)

  • 1. Complex CDKL5 translational regulation and its potential role in CDKL5 deficiency disorder.
    Ruggiero V; Fagioli C; de Pretis S; Di Carlo V; Landsberger N; Zacchetti D
    Front Cell Neurosci; 2023; 17():1231493. PubMed ID: 37964795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder.
    Galvani G; Mottolese N; Gennaccaro L; Loi M; Medici G; Tassinari M; Fuchs C; Ciani E; Trazzi S
    J Neuroinflammation; 2021 Jul; 18(1):155. PubMed ID: 34238328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-quadruplex located in the 5'UTR of the BAG-1 mRNA affects both its cap-dependent and cap-independent translation through global secondary structure maintenance.
    Jodoin R; Carrier JC; Rivard N; Bisaillon M; Perreault JP
    Nucleic Acids Res; 2019 Nov; 47(19):10247-10266. PubMed ID: 31504805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5' untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated.
    Dmitriev SE; Andreev DE; Terenin IM; Olovnikov IA; Prassolov VS; Merrick WC; Shatsky IN
    Mol Cell Biol; 2007 Jul; 27(13):4685-97. PubMed ID: 17470553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacotherapy with sertraline rescues brain development and behavior in a mouse model of CDKL5 deficiency disorder.
    Fuchs C; Gennaccaro L; Ren E; Galvani G; Trazzi S; Medici G; Loi M; Conway E; Devinsky O; Rimondini R; Ciani E
    Neuropharmacology; 2020 May; 167():107746. PubMed ID: 31469994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CDKL5 deficiency disorder: molecular insights and mechanisms of pathogenicity to fast-track therapeutic development.
    Van Bergen NJ; Massey S; Quigley A; Rollo B; Harris AR; Kapsa RMI; Christodoulou J
    Biochem Soc Trans; 2022 Aug; 50(4):1207-1224. PubMed ID: 35997111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mGluR5 PAMs rescue cortical and behavioural defects in a mouse model of CDKL5 deficiency disorder.
    Gurgone A; Pizzo R; Raspanti A; Chiantia G; Devi S; Comai D; Morello N; Pilotto F; Gnavi S; Lupori L; Mazziotti R; Sagona G; Putignano E; Nocentini A; Supuran CT; Marcantoni A; Pizzorusso T; Giustetto M
    Neuropsychopharmacology; 2023 May; 48(6):877-886. PubMed ID: 35945276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal manipulation of Cdkl5 reveals essential postdevelopmental functions and reversible CDKL5 deficiency disorder-related deficits.
    Terzic B; Davatolhagh MF; Ho Y; Tang S; Liu YT; Xia Z; Cui Y; Fuccillo MV; Zhou Z
    J Clin Invest; 2021 Oct; 131(20):. PubMed ID: 34651584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5' untranslated region of coxsackievirus B3: potential targets for antiviral action of antisense oligomers.
    Yang D; Wilson JE; Anderson DR; Bohunek L; Cordeiro C; Kandolf R; McManus BM
    Virology; 1997 Feb; 228(1):63-73. PubMed ID: 9024810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubules: A Key to Understand and Correct Neuronal Defects in CDKL5 Deficiency Disorder?
    Barbiero I; De Rosa R; Kilstrup-Nielsen C
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31438497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo magnetic resonance spectroscopy in the brain of Cdkl5 null mice reveals a metabolic profile indicative of mitochondrial dysfunctions.
    Carli S; Chaabane L; Butti C; De Palma C; Aimar P; Salio C; Vignoli A; Giustetto M; Landsberger N; Frasca A
    J Neurochem; 2021 May; 157(4):1253-1269. PubMed ID: 33448385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder.
    Tassinari M; Mottolese N; Galvani G; Ferrara D; Gennaccaro L; Loi M; Medici G; Candini G; Rimondini R; Ciani E; Trazzi S
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormalities of mitochondrial dynamics and bioenergetics in neuronal cells from CDKL5 deficiency disorder.
    Van Bergen NJ; Massey S; Stait T; Ellery M; Reljić B; Formosa LE; Quigley A; Dottori M; Thorburn D; Stroud DA; Christodoulou J
    Neurobiol Dis; 2021 Jul; 155():105370. PubMed ID: 33905871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Not Just Loss-of-Function Variations: Identification of a Hypermorphic Variant in a Patient With a CDKL5 Missense Substitution.
    Frasca A; Pavlidou E; Bizzotto M; Gao Y; Balestra D; Pinotti M; Dahl HA; Mazarakis ND; Landsberger N; Kinali M
    Neurol Genet; 2022 Apr; 8(2):e666. PubMed ID: 35280940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac Functional and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder.
    Loi M; Bastianini S; Candini G; Rizzardi N; Medici G; Papa V; Gennaccaro L; Mottolese N; Tassinari M; Uguagliati B; Berteotti C; Martire VL; Zoccoli G; Cenacchi G; Trazzi S; Bergamini C; Ciani E
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voluntary Running Improves Behavioral and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder.
    Mottolese N; Uguagliati B; Tassinari M; Cerchier CB; Loi M; Candini G; Rimondini R; Medici G; Trazzi S; Ciani E
    Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early-onset brain alterations during postnatal development in a mouse model of CDKL5 deficiency disorder.
    Tassinari M; Uguagliati B; Trazzi S; Cerchier CB; Cavina OV; Mottolese N; Loi M; Candini G; Medici G; Ciani E
    Neurobiol Dis; 2023 Jun; 182():106146. PubMed ID: 37164289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdkl5 mutant zebrafish shows skeletal and neuronal alterations mimicking human CDKL5 deficiency disorder.
    Varela T; Varela D; Martins G; Conceição N; Cancela ML
    Sci Rep; 2022 Jun; 12(1):9325. PubMed ID: 35665761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-Related Cognitive and Motor Decline in a Mouse Model of CDKL5 Deficiency Disorder is Associated with Increased Neuronal Senescence and Death.
    Gennaccaro L; Fuchs C; Loi M; Pizzo R; Alvente S; Berteotti C; Lupori L; Sagona G; Galvani G; Gurgone A; Raspanti A; Medici G; Tassinari M; Trazzi S; Ren E; Rimondini R; Pizzorusso T; Zoccoli G; Giustetto M; Ciani E
    Aging Dis; 2021 Jun; 12(3):764-785. PubMed ID: 34094641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aged heterozygous Cdkl5 mutant mice exhibit spontaneous epileptic spasms.
    Mulcahey PJ; Tang S; Takano H; White A; Davila Portillo DR; Kane OM; Marsh ED; Zhou Z; Coulter DA
    Exp Neurol; 2020 Oct; 332():113388. PubMed ID: 32585155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.