These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 3796497)

  • 1. Source-surface distance and source-axis distance beam data acquisition.
    Barish RJ; Barish SV
    Med Phys; 1986; 13(6):959-61. PubMed ID: 3796497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central axis depth dose for a 2.5 MV Van de Graaff generator.
    Anderson DW; Raeside DE; Adams RI; Goede MR
    AJR Am J Roentgenol; 1976 Jun; 126(6):1260-5. PubMed ID: 179394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of the response of an a-Si EPID to an unflattened photon beam from an Elekta Precise linear accelerator.
    Tyner E; McClean B; McCavana P; af Wetterstedt S
    Med Phys; 2009 Apr; 36(4):1318-29. PubMed ID: 19472639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device.
    Kavuma A; Glegg M; Metwaly M; Currie G; Elliott A
    Phys Med Biol; 2010 Jan; 55(2):435-52. PubMed ID: 20019398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ITAR: A modified TAR method to determine depth dose distribution for an ophthalmic device that performs kilovoltage x-ray pencil-beam stereotaxy.
    Hanlon J; Chell E; Firpo M; Koruga I
    Med Phys; 2014 Feb; 41(2):021729. PubMed ID: 24506620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monochromatic beam characterization for Auger electron dosimetry and radiotherapy.
    Dugas JP; Oves SD; Sajo E; Matthews KL; Ham K; Hogstrom KR
    Eur J Radiol; 2008 Dec; 68(3 Suppl):S137-41. PubMed ID: 18599232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetric characterization of the iBEAM evo carbon fiber couch for radiotherapy.
    Smith DW; Christophides D; Dean C; Naisbit M; Mason J; Morgan A
    Med Phys; 2010 Jul; 37(7):3595-606. PubMed ID: 20831067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the electron pencil beam redefinition algorithm to electron arc therapy.
    Chi PC; Hogstrom KR; Starkschall G; Boyd RA; Tucker SL; Antolak JA
    Med Phys; 2006 Jul; 33(7):2369-83. PubMed ID: 16898439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiological properties of a wax-gypsum compensator material.
    du Plessis FC; Willemse CA
    Med Phys; 2005 May; 32(5):1246-55. PubMed ID: 15984675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-beam characteristics at extended treatment distances.
    Das IJ; McGee KP; Cheng CW
    Med Phys; 1995 Oct; 22(10):1667-74. PubMed ID: 8551993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of an extra-focal electron source to model collimator-scattered electrons using the pencil-beam redefinition algorithm.
    Boyd RA; Hogstrom KR; White RA; Antolak JA
    Med Phys; 2002 Nov; 29(11):2571-83. PubMed ID: 12462724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling lateral beam quality variations in pencil kernel based photon dose calculations.
    Nyholm T; Olofsson J; Ahnesjö A; Karlsson M
    Phys Med Biol; 2006 Aug; 51(16):4111-8. PubMed ID: 16885628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose properties of a laser accelerated electron beam and prospects for clinical application.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD; Chiu C; Fomytskyi M; Raischel F; Downer M; Tajima T
    Med Phys; 2004 Jul; 31(7):2053-67. PubMed ID: 15305458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a pencil beam model-based treatment planning system for fast neutron therapy.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2003 Jan; 30(1):21-6. PubMed ID: 12557974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations.
    Ye SJ; Pareek PN; Spencer S; Duan J; Brezovich IA
    Med Phys; 2005 Jun; 32(6):1460-8. PubMed ID: 16013701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdosimetry measurements characterizing the radiation fields of 300 MeV/u 12C and 185 MeV/u 7Li pencil beams stopping in water.
    Martino G; Durante M; Schardt D
    Phys Med Biol; 2010 Jun; 55(12):3441-9. PubMed ID: 20508316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of superficial dosimetry between treatment planning system and measurement for several breast cancer treatment techniques.
    Akino Y; Das IJ; Bartlett GK; Zhang H; Thompson E; Zook JE
    Med Phys; 2013 Jan; 40(1):011714. PubMed ID: 23298084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of measured pencil beam parameters for electron beam model evaluation.
    Higgins PD; Gerbi BJ; Khan FM
    Med Phys; 2003 Apr; 30(4):514-20. PubMed ID: 12722803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.