These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37965136)

  • 1. H
    Zhu L; Xu H; Yin X; Wang S
    iScience; 2023 Nov; 26(11):108249. PubMed ID: 37965136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot study on production of aviation fuel from catalytic conversion of corn stover.
    Liu Y; Chen L; Chen Y; Zhang X; Liu J; Liu Q; Li Y; Wang C; Zhang Q; Ma L
    Bioresour Technol; 2023 Mar; 372():128653. PubMed ID: 36682474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic catalysis for hemicellulose hydrolysis in corn stover.
    Lu Y; Mosier NS
    Biotechnol Prog; 2007; 23(1):116-23. PubMed ID: 17269678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.
    Li H; Deng A; Ren J; Liu C; Lu Q; Zhong L; Peng F; Sun R
    Bioresour Technol; 2014 Apr; 158():313-20. PubMed ID: 24632409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents.
    Kim S; Han J
    Bioresour Technol; 2016 Mar; 204():1-8. PubMed ID: 26765845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover.
    Sun Y; Li X; Wu L; Li Y; Li F; Xiu Z; Tong Y
    Biotechnol Biofuels; 2021 Dec; 14(1):233. PubMed ID: 34876182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Bioresour Technol; 2013 Dec; 149():216-24. PubMed ID: 24103645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation.
    Salvachúa D; Mohagheghi A; Smith H; Bradfield MFA; Nicol W; Black BA; Biddy MJ; Dowe N; Beckham GT
    Biotechnol Biofuels; 2016; 9():28. PubMed ID: 26839591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate.
    Sievers DA; Kuhn EM; Tucker MP; McMillan JD
    Bioresour Technol; 2017 Nov; 243():474-480. PubMed ID: 28689140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and efficient conversion of cellulose to levulinic acid catalyzed by carbon foam-supported heteropolyacid with Brønsted-Lewis dual-acidic sites.
    Xu X; Liang B; Zhu Y; Chen J; Gan T; Hu H; Zhang Y; Huang Z; Qin Y
    Bioresour Technol; 2023 Nov; 387():129600. PubMed ID: 37532058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Synthesis of Furfural from Biomass Using SnCl₄ as Catalyst in Ionic Liquid.
    Nie Y; Hou Q; Li W; Bai C; Bai X; Ju M
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30736429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst.
    Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C
    Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total utilization of lignin and carbohydrates in
    Chen X; Zhang K; Xiao LP; Sun RC; Song G
    Biotechnol Biofuels; 2020; 13():2. PubMed ID: 31921351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid.
    Bondesson PM; Galbe M; Zacchi G
    Biotechnol Biofuels; 2013 Jan; 6(1):11. PubMed ID: 23356481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid.
    Zhang T; Li W; An S; Huang F; Li X; Liu J; Pei G; Liu Q
    Bioresour Technol; 2018 Sep; 264():261-267. PubMed ID: 29852415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot hydrothermal conversion of different residues to value-added chemicals usıng new acidic carbonaceous catalyst.
    Ozsel BK; Ozturk D; Nis B
    Bioresour Technol; 2019 Oct; 289():121627. PubMed ID: 31212175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of hydrothermal conversion of bamboo (Phyllostachys aureosulcata) to levulinic acid via response surface methodology.
    Sweygers N; Somers MH; Appels L
    J Environ Manage; 2018 Aug; 219():95-102. PubMed ID: 29734015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of sulfonated lignin-derived ordered mesoporous carbon for catalytic production of furfural from xylose.
    Wang X; Qiu M; Tang Y; Yang J; Shen F; Qi X; Yu Y
    Int J Biol Macromol; 2021 Sep; 187():232-239. PubMed ID: 34314791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization.
    Lee JW; Kim JY; Jang HM; Lee MW; Park JM
    Bioresour Technol; 2015 Apr; 182():296-301. PubMed ID: 25706555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.