BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37965815)

  • 1. Tunable Molecular Sieving by Hierarchically Assembled Porous Organic Cage Membranes with Solvent-Responsive Switchable Pores.
    Ghaffar A; Hassan M; Penkov OV; Yavuz CT; Celebi K
    Environ Sci Technol; 2023 Dec; 57(48):20380-20391. PubMed ID: 37965815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving.
    He A; Jiang Z; Wu Y; Hussain H; Rawle J; Briggs ME; Little MA; Livingston AG; Cooper AI
    Nat Mater; 2022 Apr; 21(4):463-470. PubMed ID: 35013552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Aliphatic-Aromatic Polyamide Thin Film Composite Membrane for Highly Efficient Organic Solvent Nanofiltration.
    Li Y; Zhu J; Li S; Guo Z; Van der Bruggen B
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31962-31974. PubMed ID: 32559377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystalline Porous Organic Cage Membranes Constructed Using Fortified Intermolecular Interactions for Molecular Sieving.
    Song Z; Liu L; Sun Q; Du J; Guan J; Dou P; Zhang R; Jiang Z; Liu J
    Angew Chem Int Ed Engl; 2024 Jun; ():e202409296. PubMed ID: 38923710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformationally tunable calix[4]pyrrole-based nanofilms for efficient molecular separation.
    Liu X; Tang J; Yang J; Zhang H; Fang Y
    J Colloid Interface Sci; 2022 Mar; 610():368-375. PubMed ID: 34923274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable organic solvent nanofiltration in self-assembled membranes at the sub-1 nm scale.
    Zhang Y; Kim D; Dong R; Feng X; Osuji CO
    Sci Adv; 2022 Mar; 8(11):eabm5899. PubMed ID: 35294234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart covalent organic networks (CONs) with "on-off-on" light-switchable pores for molecular separation.
    Liu J; Wang S; Huang T; Manchanda P; Abou-Hamad E; Nunes SP
    Sci Adv; 2020 Aug; 6(34):eabb3188. PubMed ID: 32875111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preparation and application of porous organic cage capillary electrochromatographic chiral column].
    Jia W; Tang M; Zhang J; Yuan L
    Se Pu; 2022 Apr; 40(4):391-398. PubMed ID: 35362687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin Two-Dimensional Porous Fullerene Membranes for Ultimate Organic Solvent Separation.
    Chen X; Mu Y; Jin C; Wei Y; Hao J; Wang H; Caro J; Huang A
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202401747. PubMed ID: 38373179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsically Porous Molecular Materials (IPMs) for Natural Gas and Benzene Derivatives Separations.
    Zhang G; Hua B; Dey A; Ghosh M; Moosa BA; Khashab NM
    Acc Chem Res; 2021 Jan; 54(1):155-168. PubMed ID: 33332097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study.
    Li X; Liu Y; Liu Q; Zheng Z; Guo H
    RSC Adv; 2022 Mar; 12(12):7189-7198. PubMed ID: 35424694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolayer graphene membranes for molecular separation in high-temperature harsh organic solvents.
    Lu Y; Zhang L; Shen L; Liu W; Karnik R; Zhang S
    Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34508009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of stable and high-performance molecular cage-crosslinked graphene oxide membranes for contaminant removal.
    Kuang B; Xiang X; Su P; Yang W; Li W
    J Hazard Mater; 2022 Oct; 439():129708. PubMed ID: 36104919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving.
    Liu SH; Zhou JH; Wu C; Zhang P; Cao X; Sun JK
    Nat Commun; 2024 Mar; 15(1):2478. PubMed ID: 38509092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-Assisted Design of Thin-Film Composite Membranes for Solvent Recovery.
    Wang M; Shi GM; Zhao D; Liu X; Jiang J
    Environ Sci Technol; 2023 Oct; 57(42):15914-15924. PubMed ID: 37814603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments of organic solvent resistant materials for membrane separations.
    Ren D; Ren S; Lin Y; Xu J; Wang X
    Chemosphere; 2021 May; 271():129425. PubMed ID: 33445020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Gradient Covalent Organic Framework Membranes for Ultrafast and Asymmetric Solvent Transport.
    Zuo H; Lyu B; Yao J; Long W; Shi Y; Li X; Hu H; Thomas A; Yuan J; Hou B; Zhang W; Liao Y
    Adv Mater; 2024 Apr; 36(16):e2305755. PubMed ID: 38227620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-assembly of soluble metal-organic polyhedrons for high-flux thin-film nanocomposite membranes.
    Xu S; Li S; Guo X; Huang H; Qiao Z; Zhong C
    J Colloid Interface Sci; 2022 Jun; 615():10-18. PubMed ID: 35124498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zeolitic Imidazolate Framework Membranes for Organic Solvent Nanofiltration: A Molecular Simulation Exploration.
    Wei W; Gupta KM; Liu J; Jiang J
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33135-33143. PubMed ID: 30203646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent Organic Network Membranes with Tunable Nanoarchitectonics from Macrocycle Building Blocks for Graded Molecular Sieving.
    Liu L; Du J; Yao A; Song Z; Sun Q; He W; Guan J; Liu J
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4283-4294. PubMed ID: 38206114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.