These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37965817)

  • 1. Room-temperature reversible F-ion batteries based on sulfone electrolytes with a mild anion acceptor additive.
    Yu Y; Lei M; Li C
    Mater Horiz; 2024 Jan; 11(2):480-489. PubMed ID: 37965817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature cycling of metal fluoride electrodes: Liquid electrolytes for high-energy fluoride ion cells.
    Davis VK; Bates CM; Omichi K; Savoie BM; Momčilović N; Xu Q; Wolf WJ; Webb MA; Billings KJ; Chou NH; Alayoglu S; McKenney RK; Darolles IM; Nair NG; Hightower A; Rosenberg D; Ahmed M; Brooks CJ; Miller TF; Grubbs RH; Jones SC
    Science; 2018 Dec; 362(6419):1144-1148. PubMed ID: 30523107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rocking-Chair Aqueous Fluoride-Ion Batteries Enabled by Hydrogen Bonding Competition.
    Wang H; Lei C; Liu T; Xu C; He X; Liang X
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202401483. PubMed ID: 38488325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes.
    Wu F; Zhou H; Bai Y; Wang H; Wu C
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15098-107. PubMed ID: 26087246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fluoride-Ion-Conducting Solid Electrolyte with Both High Conductivity and Excellent Electrochemical Stability.
    Wang J; Hao J; Duan C; Wang X; Wang K; Ma C
    Small; 2022 Feb; 18(5):e2104508. PubMed ID: 34837307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries.
    Chen S; Che H; Feng F; Liao J; Wang H; Yin Y; Ma ZF
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43056-43065. PubMed ID: 31660726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TlSn
    Ramakrushna Achary K; Khatua S; Kamala Bharathi K; Patro LN
    Dalton Trans; 2024 Aug; 53(31):13099-13106. PubMed ID: 39037410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of a reversible redox reaction in a liquid-electrolyte-type fluoride-ion battery.
    Yaokawa R; Shiga T; Moribe S; Mukai K
    RSC Adv; 2022 Nov; 12(49):31786-31791. PubMed ID: 36380965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Strategy of Quasi-Solid-State Electrolytes to Boost the Stability and Compatibility of Mg Ion Batteries.
    Sun J; Zou Y; Gao S; Shao L; Chen C
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54711-54719. PubMed ID: 33216522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PY
    Gao Y; Chen G; Wang X; Yang H; Wang Z; Lin W; Xu H; Bai Y; Wu C
    ACS Appl Mater Interfaces; 2020 May; 12(20):22981-22991. PubMed ID: 32323970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Water-in-Salt Electrolyte for Room-Temperature Fluoride-Ion Batteries Based on a Hydrophobic-Hydrophilic Salt.
    Zou P; Wang C; He Y; Xin HL; Lin R
    Nano Lett; 2024 May; 24(18):5429-5435. PubMed ID: 38682885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Zero-Strain Insertion Cathode Material for Room-Temperature Fluoride-Ion Batteries.
    Zhang S; Wang T; Zhang J; Miao Y; Yin Q; Wu Z; Wu Y; Yuan Q; Han J
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24518-24525. PubMed ID: 35603940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layered Heterostructure Ionogel Electrolytes for High-Performance Solid-State Lithium-Ion Batteries.
    Hyun WJ; Thomas CM; Luu NS; Hersam MC
    Adv Mater; 2021 Apr; 33(13):e2007864. PubMed ID: 33594680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable Room-Temperature Sodium-Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive.
    Liu D; Li Z; Li X; Chen X; Li Z; Yuan L; Huang Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6658-6666. PubMed ID: 35076203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and Interfacial Modification of a β-PbSnF
    Liu J; Yi L; Chen X; Tang Y; Zang Z; Zou C; Zeng P; Li D; Xia J; Ni S; Wang X
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36373-36383. PubMed ID: 37482949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-Temperature Stable Inorganic Halide Perovskite as Potential Solid Electrolyte for Chloride Ion Batteries.
    Xia T; Li Y; Huang L; Ji W; Yang M; Zhao X
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18634-18641. PubMed ID: 32233446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride-
    Barbosa JC; Correia DM; Fernández EM; Fidalgo-Marijuan A; Barandika G; Gonçalves R; Ferdov S; de Zea Bermudez V; Costa CM; Lanceros-Mendez S
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48889-48900. PubMed ID: 34636238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries.
    Hyun WJ; de Moraes ACM; Lim JM; Downing JR; Park KY; Tan MTZ; Hersam MC
    ACS Nano; 2019 Aug; 13(8):9664-9672. PubMed ID: 31318524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.