These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37966039)
1. Angstrom-Scale Electrochemistry at Electrodes with Dimensions Commensurable and Smaller than Individual Reacting Species. Zhou L; Yang C; Yang X; Zhang J; Wang C; Wang W; Li M; Lu X; Li K; Yang H; Zhou H; Chen J; Zhan D; Fal'ko VI; Cheng J; Tian Z; Geim AK; Cao Y; Hu S Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202314537. PubMed ID: 37966039 [TBL] [Abstract][Full Text] [Related]
2. Size effect in ion transport through angstrom-scale slits. Esfandiar A; Radha B; Wang FC; Yang Q; Hu S; Garaj S; Nair RR; Geim AK; Gopinadhan K Science; 2017 Oct; 358(6362):511-513. PubMed ID: 29074772 [TBL] [Abstract][Full Text] [Related]
3. Electrochemistry at the edge of a single graphene layer in a nanopore. Banerjee S; Shim J; Rivera J; Jin X; Estrada D; Solovyeva V; You X; Pak J; Pop E; Aluru N; Bashir R ACS Nano; 2013 Jan; 7(1):834-43. PubMed ID: 23249127 [TBL] [Abstract][Full Text] [Related]
4. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes. Unwin PR; Güell AG; Zhang G Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067 [TBL] [Abstract][Full Text] [Related]
5. 3D Printed Graphene Electrodes' Electrochemical Activation. Browne MP; Novotný F; Sofer Z; Pumera M ACS Appl Mater Interfaces; 2018 Nov; 10(46):40294-40301. PubMed ID: 30398834 [TBL] [Abstract][Full Text] [Related]
6. Graphene nanoelectrodes: fabrication and size-dependent electrochemistry. Zhang B; Fan L; Zhong H; Liu Y; Chen S J Am Chem Soc; 2013 Jul; 135(27):10073-80. PubMed ID: 23768175 [TBL] [Abstract][Full Text] [Related]
7. Graphene electrochemistry: fundamental concepts through to prominent applications. Brownson DA; Kampouris DK; Banks CE Chem Soc Rev; 2012 Nov; 41(21):6944-76. PubMed ID: 22850696 [TBL] [Abstract][Full Text] [Related]
8. Molecular transport through capillaries made with atomic-scale precision. Radha B; Esfandiar A; Wang FC; Rooney AP; Gopinadhan K; Keerthi A; Mishchenko A; Janardanan A; Blake P; Fumagalli L; Lozada-Hidalgo M; Garaj S; Haigh SJ; Grigorieva IV; Wu HA; Geim AK Nature; 2016 Oct; 538(7624):222-225. PubMed ID: 27602512 [TBL] [Abstract][Full Text] [Related]
9. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Yuan W; Zhou Y; Li Y; Li C; Peng H; Zhang J; Liu Z; Dai L; Shi G Sci Rep; 2013; 3():2248. PubMed ID: 23896697 [TBL] [Abstract][Full Text] [Related]
10. Electrochemistry of Multilayer Electrodes: From the Basics to Energy Applications. Gu M; Kim BS Acc Chem Res; 2021 Jan; 54(1):57-69. PubMed ID: 33172254 [TBL] [Abstract][Full Text] [Related]
11. Engineering the Interfaces of Superadsorbing Graphene-Based Electrodes with Gas and Electrolyte to Boost Gas Evolution and Activation Reactions. Zhang JJ; Lv LB; Zhao TJ; Lin YX; Yu QY; Su J; Hirano SI; Li XH; Chen JS ChemSusChem; 2018 Jul; 11(14):2306-2309. PubMed ID: 29851293 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical Behavior of Graphene in a Deep Eutectic Solvent. Fuchs D; Bayer BC; Gupta T; Szabo GL; Wilhelm RA; Eder D; Meyer JC; Steiner S; Gollas B ACS Appl Mater Interfaces; 2020 Sep; 12(36):40937-40948. PubMed ID: 32805835 [TBL] [Abstract][Full Text] [Related]
13. Unidirectional Photocurrent of Photosystem I on π-System-Modified Graphene Electrodes: Nanobionic Approaches for the Construction of Photobiohybrid Systems. Feifel SC; Lokstein H; Hejazi M; Zouni A; Lisdat F Langmuir; 2015 Sep; 31(38):10590-8. PubMed ID: 26348323 [TBL] [Abstract][Full Text] [Related]
14. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements. Gao W; Hood ZD; Chi M Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240 [TBL] [Abstract][Full Text] [Related]
15. Graphene as a subnanometre trans-electrode membrane. Garaj S; Hubbard W; Reina A; Kong J; Branton D; Golovchenko JA Nature; 2010 Sep; 467(7312):190-3. PubMed ID: 20720538 [TBL] [Abstract][Full Text] [Related]
16. Mechanical Mechanism of Ion and Water Molecular Transport through Angstrom-Scale Graphene Derivatives Channels: From Atomic Model to Solid-Liquid Interaction. Fan L Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373149 [TBL] [Abstract][Full Text] [Related]
17. Protein electrochemistry using graphene-based nano-assembly: an ultrasensitive electrochemical detection of protein molecules via nanoparticle-electrode collisions. Li D; Liu J; Barrow CJ; Yang W Chem Commun (Camb); 2014 Aug; 50(60):8197-200. PubMed ID: 24927153 [TBL] [Abstract][Full Text] [Related]
18. Electrochemistry of individual monolayer graphene sheets. Li W; Tan C; Lowe MA; Abruña HD; Ralph DC ACS Nano; 2011 Mar; 5(3):2264-70. PubMed ID: 21332139 [TBL] [Abstract][Full Text] [Related]
19. Angstrom-Confined Electrochemical Synthesis of Sub-Unit-Cell Non-Van Der Waals 2D Metal Oxides. Ji D; Lee Y; Nishina Y; Kamiya K; Daiyan R; Chu D; Wen X; Yoshimura M; Kumar P; Andreeva DV; Novoselov KS; Lee GH; Joshi R; Foller T Adv Mater; 2023 Jul; 35(30):e2301506. PubMed ID: 37116867 [TBL] [Abstract][Full Text] [Related]
20. Chemical nature of electrochemical activation of carbon electrodes. Li Y; Zhou J; Song J; Liang X; Zhang Z; Men D; Wang D; Zhang XE Biosens Bioelectron; 2019 Nov; 144():111534. PubMed ID: 31518791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]