These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37966109)

  • 1. Enhancement of Bayesian optimal interval design by accounting for overdose and underdose errors trade-offs.
    Sadachi R; Sato H; Fujiwara T; Hirakawa A
    J Biopharm Stat; 2023 Nov; ():1-20. PubMed ID: 37966109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of Bayesian optimal interval (BOIN) design with interval 3+3 (i3+3) design for phase I oncology dose-finding trials.
    Zhou Y; Li R; Yan F; Lee JJ; Yuan Y
    Stat Biopharm Res; 2021; 13(2):147-155. PubMed ID: 34249223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic comparison of the statistical operating characteristics of various Phase I oncology designs.
    Ananthakrishnan R; Green S; Chang M; Doros G; Massaro J; LaValley M
    Contemp Clin Trials Commun; 2017 Mar; 5():34-48. PubMed ID: 29740620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-to-Event Bayesian Optimal Interval Design to Accelerate Phase I Trials.
    Yuan Y; Lin R; Li D; Nie L; Warren KE
    Clin Cancer Res; 2018 Oct; 24(20):4921-4930. PubMed ID: 29769209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Should the choice of BOIN design parameter
    Lu R
    medRxiv; 2024 Mar; ():. PubMed ID: 38496500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel framework of Bayesian optimal interval design for phase I trials with late-onset toxicities.
    Zhou H; Chen C; Sun L; Zeng Z
    Contemp Clin Trials; 2021 Jun; 105():106404. PubMed ID: 33862287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian dose escalation with overdose and underdose control utilizing all toxicities in Phase I/II clinical trials.
    Tu J; Chen Z
    Biom J; 2024 Jan; 66(1):e2200189. PubMed ID: 38047521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backfilling Patients in Phase I Dose-Escalation Trials Using Bayesian Optimal Interval Design (BOIN).
    Zhao Y; Yuan Y; Korn EL; Freidlin B
    Clin Cancer Res; 2024 Feb; 30(4):673-679. PubMed ID: 38048044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CUSUMIN: A cumulative sum interval design for cancer phase I dose finding studies.
    Hatayama T; Yasui S
    Pharm Stat; 2022 Nov; 21(6):1324-1341. PubMed ID: 35833753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of EWOC principle in BLRM design for phase 1 oncology trials.
    Guo X; Kent S; Maity A; Zhong W
    J Biopharm Stat; 2024 Apr; ():1-17. PubMed ID: 38562014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of the BOIN design and its current extensions for novel early-phase oncology trials.
    Ananthakrishnan R; Lin R; He C; Chen Y; Li D; LaValley M
    Contemp Clin Trials Commun; 2022 Aug; 28():100943. PubMed ID: 35812822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the relative efficiency of model-assisted designs: a conditional approach.
    Lin R; Yuan Y
    J Biopharm Stat; 2019; 29(4):648-662. PubMed ID: 31258039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy, Safety, and Reliability of Novel Phase I Trial Designs.
    Zhou H; Yuan Y; Nie L
    Clin Cancer Res; 2018 Sep; 24(18):4357-4364. PubMed ID: 29661774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing phase I oncology dose escalation using dose-exposure-toxicity models as a complementary approach to model-based dose-toxicity models.
    Pantoja K; Lanke S; Munafo A; Victor A; Habermehl C; Schueler A; Venkatakrishnan K; Girard P; Goteti K
    CPT Pharmacometrics Syst Pharmacol; 2022 Oct; 11(10):1371-1381. PubMed ID: 35852048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating historical information to improve phase I clinical trials.
    Zhou Y; Lee JJ; Wang S; Bailey S; Yuan Y
    Pharm Stat; 2021 Nov; 20(6):1017-1034. PubMed ID: 33793044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rolling continual reassessment method with overdose control: An efficient and safe dose escalation design.
    Zhu J; Sabanés Bové D; Liao Z; Beyer U; Yung G; Sarkar S
    Contemp Clin Trials; 2021 Aug; 107():106436. PubMed ID: 34000410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian interval-based oncology dose-finding design with repeated quasi-continuous toxicity model.
    Zhao D; Zhu J; Wang L
    Contemp Clin Trials; 2021 Mar; 102():106265. PubMed ID: 33418097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian adaptive design for cancer phase I trials using a flexible range of doses.
    Tighiouart M; Cook-Wiens G; Rogatko A
    J Biopharm Stat; 2018; 28(3):562-574. PubMed ID: 28858566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive dose-finding studies: a review of model-guided phase I clinical trials.
    Iasonos A; O'Quigley J
    J Clin Oncol; 2014 Aug; 32(23):2505-11. PubMed ID: 24982451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TITE-BOIN-ET: Time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes.
    Takeda K; Morita S; Taguri M
    Pharm Stat; 2020 May; 19(3):335-349. PubMed ID: 31829517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.