These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 37966123)
1. Machine learning based on SPECT/CT to differentiate bone metastasis and benign bone lesions in lung malignancy patients. Wang H; Chen Y; Qiu J; Xie J; Lu W; Ma J; Jia M Med Phys; 2024 Apr; 51(4):2578-2588. PubMed ID: 37966123 [TBL] [Abstract][Full Text] [Related]
2. Radiomics‑Clinical model based on Wang H; Qiu J; Xie J; Lu W; Pan Y; Ma J; Jia M J Cancer Res Clin Oncol; 2023 Nov; 149(14):13353-13361. PubMed ID: 37491635 [TBL] [Abstract][Full Text] [Related]
3. Prospective study of dual-phase Cheng L; Gao H; Wang Z; Guo L; Wang X; Jin G Eur J Radiol; 2024 Oct; 179():111657. PubMed ID: 39163806 [TBL] [Abstract][Full Text] [Related]
4. Single-Photon Emission Computed Tomography/Computed Tomography Image-Based Radiomics for Discriminating Vertebral Bone Metastases From Benign Bone Lesions in Patients With Tumors. Jin Z; Zhang F; Wang Y; Tian A; Zhang J; Chen M; Yu J Front Med (Lausanne); 2021; 8():792581. PubMed ID: 35059418 [No Abstract] [Full Text] [Related]
5. Radiomics based on multiple machine learning methods for diagnosing early bone metastases not visible on CT images. Wang H; Qiu J; Lu W; Xie J; Ma J Skeletal Radiol; 2025 Feb; 54(2):335-343. PubMed ID: 39028463 [TBL] [Abstract][Full Text] [Related]
6. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening. Bülbül HM; Burakgazi G; Kesimal U; Kaba E Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559 [TBL] [Abstract][Full Text] [Related]
7. A combined non-enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub-centimeter pulmonary solid nodules. Lin RY; Zheng YN; Lv FJ; Fu BJ; Li WJ; Liang ZR; Chu ZG Med Phys; 2023 May; 50(5):2835-2843. PubMed ID: 36810703 [TBL] [Abstract][Full Text] [Related]
8. Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions. Zhang R; Zhu L; Cai Z; Jiang W; Li J; Yang C; Yu C; Jiang B; Wang W; Xu W; Chai X; Zhang X; Tang Y Eur J Radiol; 2019 Dec; 121():108735. PubMed ID: 31733432 [TBL] [Abstract][Full Text] [Related]
9. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma. Wang Y; Bai G; Huang M; Chen W Front Oncol; 2024; 14():1308317. PubMed ID: 38549935 [TBL] [Abstract][Full Text] [Related]
10. Differentiation of Lung Metastases Originated From Different Primary Tumors Using Radiomics Features Based on CT Imaging. Shang H; Li J; Jiao T; Fang C; Li K; Yin D; Zeng Q Acad Radiol; 2023 Jan; 30(1):40-46. PubMed ID: 35577699 [TBL] [Abstract][Full Text] [Related]
11. Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics. Xiao DX; Zhong JP; Peng JD; Fan CG; Wang XC; Wen XL; Liao WW; Wang J; Yin XF BMC Med Imaging; 2023 Oct; 23(1):159. PubMed ID: 37845636 [TBL] [Abstract][Full Text] [Related]
12. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
13. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008 [TBL] [Abstract][Full Text] [Related]
14. Multiphasic CT-Based Radiomics Analysis for the Differentiation of Benign and Malignant Parotid Tumors. Yu Q; Wang A; Gu J; Li Q; Ning Y; Peng J; Lv F; Zhang X Front Oncol; 2022; 12():913898. PubMed ID: 35847942 [TBL] [Abstract][Full Text] [Related]
15. Establishment and validation of novel predictive models to predict bone metastasis in newly diagnosed prostate adenocarcinoma based on single-photon emission computed tomography radiomics. Wang N; Qu S; Kong W; Hua Q; Hong Z; Liu Z; Shi Y Ann Nucl Med; 2024 Sep; 38(9):734-743. PubMed ID: 38822897 [TBL] [Abstract][Full Text] [Related]
16. Application of a combined radiomics nomogram based on CE-CT in the preoperative prediction of thymomas risk categorization. Dong W; Xiong S; Lei P; Wang X; Liu H; Liu Y; Zou H; Fan B; Qiu Y Front Oncol; 2022; 12():944005. PubMed ID: 36081562 [TBL] [Abstract][Full Text] [Related]
17. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram. Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097 [TBL] [Abstract][Full Text] [Related]
18. A radiomics approach for automated diagnosis of ovarian neoplasm malignancy in computed tomography. Li S; Liu J; Xiong Y; Pang P; Lei P; Zou H; Zhang M; Fan B; Luo P Sci Rep; 2021 Apr; 11(1):8730. PubMed ID: 33888749 [TBL] [Abstract][Full Text] [Related]
19. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
20. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]