These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37966758)

  • 1. High-precision fiber-optic time transfer with an unlimited compensation range.
    Han D; Wei W; Xie W; Dong Y
    Opt Lett; 2023 Nov; 48(22):5943-5946. PubMed ID: 37966758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed receiving system with local digitization and combination for SNR enhancement.
    Wang K; Wei W; Wang D; Wang P; Xie W; Dong Y
    Opt Express; 2023 Jan; 31(2):1014-1024. PubMed ID: 36785137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirped frequency transfer: a tool for synchronization and time transfer.
    Raupach SM; Grosche G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):920-9. PubMed ID: 24859656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.
    Chen X; Lu J; Cui Y; Zhang J; Lu X; Tian X; Ci C; Liu B; Wu H; Tang T; Shi K; Zhang Z
    Sci Rep; 2015 Dec; 5():18343. PubMed ID: 26691731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-precision two-way optic-fiber time transfer using an improved time code.
    Wu G; Hu L; Zhang H; Chen J
    Rev Sci Instrum; 2014 Nov; 85(11):114701. PubMed ID: 25430127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlimited phase compensator for fiber-optic interferometric detection of slow temperature change.
    Martinelli M
    Opt Lett; 1984 Sep; 9(9):429-31. PubMed ID: 19721622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term stability improvement of tunable optoelectronic oscillator using dynamic feedback compensation.
    Xu K; Wu Z; Zheng J; Dai J; Dai Y; Yin F; Li J; Zhou Y; Lin J
    Opt Express; 2015 May; 23(10):12935-41. PubMed ID: 26074546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Precision Single-Photon Laser Time Transfer with Temperature Drift Post-Compensation.
    Meng W; Wang Y; Tang K; Zhang Z; Jin S; Procházka I; Zhang Z; Wu G
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-dynamic-range time pre-compensation scheme for fiber optic time transfer.
    Yu L; Wang R; Lu L; Zhu Y; Wu C; Zhang B; Wei Y
    Appl Opt; 2017 Feb; 56(6):1757-1762. PubMed ID: 28234385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute phase marking technology and fiber-optic remote coherent phase transmission.
    Wu R; Yang F; Sun Y; Cheng N; Wang J; Wei F; Gui Y; Cai H
    Opt Express; 2021 Apr; 29(9):14041-14057. PubMed ID: 33985130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributed coherent microwave photonic radar with a high-precision fiber-optic time and frequency network.
    Wang H; Li S; Xue X; Xiao X; Zheng X
    Opt Express; 2020 Oct; 28(21):31241-31252. PubMed ID: 33115102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing.
    He Y; Orr BJ; Baldwin KG; Wouters MJ; Luiten AN; Aben G; Warrington RB
    Opt Express; 2013 Aug; 21(16):18754-64. PubMed ID: 23938791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-optic time-frequency transfer in gigabit ethernet networks over urban fiber links.
    Lu Z; Gui Y; Wang J; Ying K; Sun Y; Liu L; Cheng N; Cai H
    Opt Express; 2021 Apr; 29(8):11693-11701. PubMed ID: 33984945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-access relay stations for long-haul fiber-optic radio frequency transfer.
    Li Q; Hu L; Zhang J; Chen J; Wu G
    Opt Express; 2022 May; 30(11):18402-18414. PubMed ID: 36221642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry-Perot Sensors Based on Dual Superluminescent Diodes.
    Zhang W; Yu J; Zhang X; Chen H; Zhang J; Wang W
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-precision synchronization detection method for bistatic radar.
    Du B; Feng D; Sun X
    Rev Sci Instrum; 2019 Mar; 90(3):034705. PubMed ID: 30927773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FBG wavelength demodulation based on a radio frequency optical true time delay method.
    Wang J; Zhu W; Ma C; Xu T
    Opt Lett; 2018 Jun; 43(11):2664-2667. PubMed ID: 29856387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of digital servos in an optical frequency transfer network.
    Hu L; Xue R; Wu G; Chen J
    Rev Sci Instrum; 2021 May; 92(5):053709. PubMed ID: 34243296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber-optic radio frequency transfer based on passive phase noise compensation with frequency dividing and filtering.
    Huang R; Wu G; Li H; Chen J
    Opt Lett; 2016 Feb; 41(3):626-9. PubMed ID: 26907440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of high-stability 10 GHz local oscillator over 100 km optical fiber with accurate phase-correction system.
    Wang S; Sun D; Dong Y; Xie W; Shi H; Yi L; Hu W
    Opt Lett; 2014 Feb; 39(4):888-91. PubMed ID: 24562233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.