These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37966759)

  • 1. Multiple flatbands and localized states in photonic super-Kagome lattices.
    Song L; Gao S; Ma J; Tang L; Song D; Li Y; Chen Z
    Opt Lett; 2023 Nov; 48(22):5947-5950. PubMed ID: 37966759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Flatband Loop States Arising from Nontrivial Real-Space Topology.
    Ma J; Rhim JW; Tang L; Xia S; Wang H; Zheng X; Xia S; Song D; Hu Y; Li Y; Yang BJ; Leykam D; Chen Z
    Phys Rev Lett; 2020 May; 124(18):183901. PubMed ID: 32441985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flatbands and Emergent Ferromagnetic Ordering in Fe_{3}Sn_{2} Kagome Lattices.
    Lin Z; Choi JH; Zhang Q; Qin W; Yi S; Wang P; Li L; Wang Y; Zhang H; Sun Z; Wei L; Zhang S; Guo T; Lu Q; Cho JH; Zeng C; Zhang Z
    Phys Rev Lett; 2018 Aug; 121(9):096401. PubMed ID: 30230862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flatbands under correlated perturbations.
    Bodyfelt JD; Leykam D; Danieli C; Yu X; Flach S
    Phys Rev Lett; 2014 Dec; 113(23):236403. PubMed ID: 25526142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of all-band-flat photonic lattices.
    Yang J; Li Y; Yang Y; Xie X; Zhang Z; Yuan J; Cai H; Wang DW; Gao F
    Nat Commun; 2024 Feb; 15(1):1484. PubMed ID: 38374147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of energy band and its impact on the light transmission in a non-reciprocal Hermitian hourglass lattice.
    Yang J; Wang Y; Lin Y; Zhang W; Xin G; Qi X
    Opt Lett; 2024 Jan; 49(2):266-269. PubMed ID: 38194544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic flatband resonances for free-electron radiation.
    Yang Y; Roques-Carmes C; Kooi SE; Tang H; Beroz J; Mazur E; Kaminer I; Joannopoulos JD; Soljačić M
    Nature; 2023 Jan; 613(7942):42-47. PubMed ID: 36600060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological flat bands in frustrated kagome lattice CoSn.
    Kang M; Fang S; Ye L; Po HC; Denlinger J; Jozwiak C; Bostwick A; Rotenberg E; Kaxiras E; Checkelsky JG; Comin R
    Nat Commun; 2020 Aug; 11(1):4004. PubMed ID: 32778669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unconventional Flatband Line States in Photonic Lieb Lattices.
    Xia S; Ramachandran A; Xia S; Li D; Liu X; Tang L; Hu Y; Song D; Xu J; Leykam D; Flach S; Chen Z
    Phys Rev Lett; 2018 Dec; 121(26):263902. PubMed ID: 30636121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband frequency generation by four-wave mixing in an all-bands-flat Floquet-Lieb topological insulator.
    Kim TB; Song H; Huculak P; Van V
    Opt Lett; 2024 Feb; 49(3):634-637. PubMed ID: 38300077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchy of Ideal Flatbands in Chiral Twisted Multilayer Graphene Models.
    Wang J; Liu Z
    Phys Rev Lett; 2022 Apr; 128(17):176403. PubMed ID: 35570419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact modes in quasi one dimensional coupled magnetic oscillators.
    López-González D; Molina MI
    J Phys Condens Matter; 2017 Nov; 29(47):475801. PubMed ID: 28976358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bird's eye view on the flat and conic band world of the honeycomb and Kagome lattices: towards an understanding of 2D metal-organic frameworks electronic structure.
    Barreteau C; Ducastelle F; Mallah T
    J Phys Condens Matter; 2017 Nov; 29(46):465302. PubMed ID: 28960181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single and double linear and nonlinear flatband chains: Spectra and modes.
    Zegadlo K; Dror N; Viet Hung N; Trippenbach M; Malomed BA
    Phys Rev E; 2017 Jul; 96(1-1):012204. PubMed ID: 29347199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nearly flatbands with nontrivial topology.
    Sun K; Gu Z; Katsura H; Das Sarma S
    Phys Rev Lett; 2011 Jun; 106(23):236803. PubMed ID: 21770533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized modes in a two-dimensional lattice with a pluslike geometry.
    Stojanović Krasić M; Stojanović M; Maluckov A; Maczewsky LJ; Szameit A; Stepić M
    Phys Rev E; 2020 Sep; 102(3-1):032207. PubMed ID: 33075910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically-Induced Symmetry Switching in a Reconfigurable Kagome Photonic Lattice: From Flatband to Type-III Dirac Cones.
    Yu Q; Liu Z; Guo D; Liang S; Zhang Y; Zhang Z
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disorder effects on flatbands in moiré superlattices.
    Xia X; Liu Q; Zou B; Hong P; Liang Y
    Opt Lett; 2024 May; 49(10):2553-2556. PubMed ID: 38748103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct geometric probe of singularities in band structure.
    Brown CD; Chang SW; Schwarz MN; Leung TH; Kozii V; Avdoshkin A; Moore JE; Stamper-Kurn D
    Science; 2022 Sep; 377(6612):1319-1322. PubMed ID: 36108029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitaxial Growth of Single-Layer Kagome Nanoflakes with Topological Band Inversion.
    Duan S; You JY; Gou J; Chen J; Huang YL; Liu M; Sun S; Wang Y; Yu X; Wang L; Feng YP; Sun YY; Wee ATS; Chen W
    ACS Nano; 2022 Dec; 16(12):21079-21086. PubMed ID: 36383161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.