BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37967056)

  • 1. Computational insights on the hydride and proton transfer mechanisms of L-proline dehydrogenase.
    Yildiz I
    PLoS One; 2023; 18(11):e0290901. PubMed ID: 37967056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.
    Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ
    Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Insights on the Hydride and Proton Transfer Mechanisms of D-Arginine Dehydrogenase.
    Yildiz I
    Chemphyschem; 2023 Oct; 24(20):e202300431. PubMed ID: 37540527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and isotopic characterization of L-proline dehydrogenase from Mycobacterium tuberculosis.
    Serrano H; Blanchard JS
    Biochemistry; 2013 Jul; 52(29):5009-15. PubMed ID: 23834473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures and kinetics of monofunctional proline dehydrogenase provide insight into substrate recognition and conformational changes associated with flavin reduction and product release.
    Luo M; Arentson BW; Srivastava D; Becker DF; Tanner JJ
    Biochemistry; 2012 Dec; 51(50):10099-108. PubMed ID: 23151026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
    Moxley MA; Becker DF
    Biochemistry; 2012 Jan; 51(1):511-20. PubMed ID: 22148640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
    Campbell AC; Becker DF; Gates KS; Tanner JJ
    ACS Chem Biol; 2020 Apr; 15(4):936-944. PubMed ID: 32159324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dihydroorotate dehydrogenase B of Enterococcus faecalis. Characterization and insights into chemical mechanism.
    Marcinkeviciene J; Tinney LM; Wang KH; Rogers MJ; Copeland RA
    Biochemistry; 1999 Oct; 38(40):13129-37. PubMed ID: 10529184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.
    Baban BA; Vinod MP; Tanner JJ; Becker DF
    Biochim Biophys Acta; 2004 Sep; 1701(1-2):49-59. PubMed ID: 15450175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitutions of S101 decrease proton and hydride transfers in the oxidation of betaine aldehyde by choline oxidase.
    Gadda G; Yuan H
    Arch Biochem Biophys; 2017 Nov; 634():76-82. PubMed ID: 29029877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic aspects and redox properties of hyperthermophilic L-proline dehydrogenase from Pyrococcus furiosus related to dimethylglycine dehydrogenase/oxidase.
    Monaghan PJ; Leys D; Scrutton NS
    FEBS J; 2007 Apr; 274(8):2070-87. PubMed ID: 17371548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.
    White TA; Krishnan N; Becker DF; Tanner JJ
    J Biol Chem; 2007 May; 282(19):14316-27. PubMed ID: 17344208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects.
    Chow C; Hegde S; Blanchard JS
    Biochemistry; 2017 Aug; 56(31):4044-4052. PubMed ID: 28700220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the inactivation of Thermus thermophilus proline dehydrogenase by N-propargylglycine.
    White TA; Johnson WH; Whitman CP; Tanner JJ
    Biochemistry; 2008 May; 47(20):5573-80. PubMed ID: 18426222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic studies of the coenzyme F420 reducing formate dehydrogenase from Methanobacterium formicicum.
    Schauer NL; Ferry JG; Honek JF; Orme-Johnson WH; Walsh C
    Biochemistry; 1986 Nov; 25(22):7163-8. PubMed ID: 3801411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-proline dehydrogenases in hyperthermophilic archaea: distribution, function, structure, and application.
    Kawakami R; Satomura T; Sakuraba H; Ohshima T
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):83-93. PubMed ID: 22089387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase.
    Meints CE; Gustafsson FS; Scrutton NS; Wolthers KR
    Biochemistry; 2011 Dec; 50(51):11131-42. PubMed ID: 22097960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.