These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37967152)

  • 41. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device.
    Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV
    ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nano-atomic scale hydrophobic/philic confinement of peptides on mineral surfaces by cross-correlated SPM and quantum mechanical DFT analysis.
    Moro D; Ulian G; ValdrÈ G
    J Microsc; 2020 Dec; 280(3):204-221. PubMed ID: 32458447
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements.
    Giusti F; Popot JL; Tribet C
    Langmuir; 2012 Jul; 28(28):10372-80. PubMed ID: 22712750
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced Förster resonance energy transfer on layered metal-dielectric hyperbolic metamaterials: an excellent platform for low-threshold laser action.
    Shih CT; Chao YC; Shen JL; Chen YF
    Opt Express; 2023 Apr; 31(8):12669-12679. PubMed ID: 37157422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioassembled layered silicate-metal nanoparticle hybrids.
    Drummy LF; Jones SE; Pandey RB; Farmer BL; Vaia RA; Naik RR
    ACS Appl Mater Interfaces; 2010 May; 2(5):1492-8. PubMed ID: 20405826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of planar colloidal clusters with template-assisted interfacial assembly.
    Wirth CL; De Volder M; Vermant J
    Langmuir; 2015 Feb; 31(5):1632-40. PubMed ID: 25633426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of atenolol based on the reversion of the fluorescence resonance energy transfer between AgInS
    Castro RC; Lopes AFR; Soares JX; Ribeiro DSM; Santos JLM
    Analyst; 2021 Feb; 146(3):1004-1015. PubMed ID: 33295361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectral Förster resonance energy transfer detection of protein interactions in surface-supported bilayers.
    Merzlyakov M; Li E; Casas R; Hristova K
    Langmuir; 2006 Aug; 22(16):6986-92. PubMed ID: 16863249
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surfactant-mediated enhanced FRET from a quantum-dot complex for ratiometric sensing of food colorants.
    Singha S; Manna M; Das P; Pramanik S; Bhandari S
    Chem Commun (Camb); 2023 Oct; 59(84):12653-12656. PubMed ID: 37794815
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Layered Silicates as a Possible Drug Carrier.
    Intasa-Ard SG; Ogawa M
    Enzymes; 2018; 44():117-136. PubMed ID: 30360812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-throughput micro-nanostructuring by microdroplet inkjet printing.
    Neumann HR; Selhuber-Unkel C
    Beilstein J Nanotechnol; 2018; 9():2372-2380. PubMed ID: 30254832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning.
    Myers BD; Lin QY; Wu H; Luijten E; Mirkin CA; Dravid VP
    ACS Nano; 2016 Jun; 10(6):5679-86. PubMed ID: 27192324
    [TBL] [Abstract][Full Text] [Related]  

  • 54.
    Li X; Zhou H; Niu Z; Zheng K; Niu D; Zhao W; Liu X; Si W; Li C; Wang P; Cao J; Li Y; Wen G
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24644-24654. PubMed ID: 32407072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and application of quantum dots FRET-based protease sensors.
    Shi L; De Paoli V; Rosenzweig N; Rosenzweig Z
    J Am Chem Soc; 2006 Aug; 128(32):10378-9. PubMed ID: 16895398
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Embedding objects during 3D printing to add new functionalities.
    Yuen PK
    Biomicrofluidics; 2016 Jul; 10(4):044104. PubMed ID: 27478528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protease sensing using nontoxic silicon quantum dots.
    Cheng X; McVey BFP; Robinson AB; Longatte G; O'Mara PB; Tan VTG; Thordarson P; Tilley RD; Gaus K; Justin Gooding J
    J Biomed Opt; 2017 Aug; 22(8):1-7. PubMed ID: 28836415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Förster resonance energy transfer.
    Datinská V; Klepárník K; Belšánová B; Minárik M; Foret F
    J Sep Sci; 2018 Jul; 41(14):2961-2968. PubMed ID: 29742317
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functionalization and Patterning of Self-Assembled Monolayers and Polymer Brushes Using Microcontact Chemistry.
    Lamping S; Buten C; Ravoo BJ
    Acc Chem Res; 2019 May; 52(5):1336-1346. PubMed ID: 30969751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly sensitive detection of acid phosphatase by using a graphene quantum dots-based förster resonance energy transfer.
    Na W; Liu Q; Sui B; Hu T; Su X
    Talanta; 2016 Dec; 161():469-475. PubMed ID: 27769433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.