These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37967264)
21. Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning. Pisharady PK; Sotiropoulos SN; Duarte-Carvajalino JM; Sapiro G; Lenglet C Neuroimage; 2018 Feb; 167():488-503. PubMed ID: 28669918 [TBL] [Abstract][Full Text] [Related]
22. Using noisy or incomplete data to discover models of spatiotemporal dynamics. Reinbold PAK; Gurevich DR; Grigoriev RO Phys Rev E; 2020 Jan; 101(1-1):010203. PubMed ID: 32069592 [TBL] [Abstract][Full Text] [Related]
23. Sparse dynamics for partial differential equations. Schaeffer H; Caflisch R; Hauck CD; Osher S Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6634-9. PubMed ID: 23533273 [TBL] [Abstract][Full Text] [Related]
24. Lattice Boltzmann model for nonlinear convection-diffusion equations. Shi B; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016701. PubMed ID: 19257160 [TBL] [Abstract][Full Text] [Related]
25. PDE-READ: Human-readable partial differential equation discovery using deep learning. Stephany R; Earls C Neural Netw; 2022 Oct; 154():360-382. PubMed ID: 35944367 [TBL] [Abstract][Full Text] [Related]
26. Gaussian processes meet NeuralODEs: a Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data. Bhouri MA; Perdikaris P Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210201. PubMed ID: 35719075 [TBL] [Abstract][Full Text] [Related]
27. Coarse-scale PDEs from fine-scale observations via machine learning. Lee S; Kooshkbaghi M; Spiliotis K; Siettos CI; Kevrekidis IG Chaos; 2020 Jan; 30(1):013141. PubMed ID: 32013472 [TBL] [Abstract][Full Text] [Related]
28. Sparsifying priors for Bayesian uncertainty quantification in model discovery. Hirsh SM; Barajas-Solano DA; Kutz JN R Soc Open Sci; 2022 Feb; 9(2):211823. PubMed ID: 35223066 [TBL] [Abstract][Full Text] [Related]
29. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation. Madruga S; Riecke H; Pesch W Phys Rev Lett; 2006 Feb; 96(7):074501. PubMed ID: 16606097 [TBL] [Abstract][Full Text] [Related]
31. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations. Goraya S; Sobh N; Masud A Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614 [TBL] [Abstract][Full Text] [Related]
32. The Numerical Solution of a Nonseparable Elliptic Partial Differential Equation by Preconditioned Conjugate Gradients. Lewis JG; Rehm RG J Res Natl Bur Stand (1977); 1980; 85(5):367-390. PubMed ID: 34566030 [TBL] [Abstract][Full Text] [Related]
38. The relevance sample-feature machine: a sparse Bayesian learning approach to joint feature-sample selection. Mohsenzadeh Y; Sheikhzadeh H; Reza AM; Bathaee N; Kalayeh MM IEEE Trans Cybern; 2013 Dec; 43(6):2241-54. PubMed ID: 23782842 [TBL] [Abstract][Full Text] [Related]
39. Discovery of nonlinear dynamical systems using a Runge-Kutta inspired dictionary-based sparse regression approach. Goyal P; Benner P Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210883. PubMed ID: 35756880 [TBL] [Abstract][Full Text] [Related]
40. Fast and robust Block-Sparse Bayesian learning for EEG source imaging. Ojeda A; Kreutz-Delgado K; Mullen T Neuroimage; 2018 Jul; 174():449-462. PubMed ID: 29596978 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]