BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3796733)

  • 21. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition.
    Lu D; Searles MA; Klug A
    Nature; 2003 Nov; 426(6962):96-100. PubMed ID: 14603324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zinc release from Xenopus transcription factor IIIA induced by chemical modifications.
    Shang Z; Liao YD; Wu FY; Wu CW
    Biochemistry; 1989 Dec; 28(25):9790-5. PubMed ID: 2611263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and properties of the first specific 5S rRNA binding protein from plants which shows transcription factor IIIA activity.
    Wyszko E; Barciszewski J; Barciszewska M
    Nucleic Acids Symp Ser; 1995; (33):53-5. PubMed ID: 8643397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Importance of minor groove binding zinc fingers within the transcription factor IIIA-DNA complex.
    Neely L; Trauger JW; Baird EE; Dervan PB; Gottesfeld JM
    J Mol Biol; 1997 Dec; 274(4):439-45. PubMed ID: 9417925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The crystal structure of d(GGATGGGAG): an essential part of the binding site for transcription factor IIIA.
    McCall M; Brown T; Hunter WN; Kennard O
    Nature; 1986 Aug 14-20; 322(6080):661-4. PubMed ID: 3748146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The histone binding protein nucleoplasmin does not facilitate binding of transcription factor IIIA to nucleosomal Xenopus laevis 5S rRNA genes.
    Howe L; Itoh T; Katagiri C; Ausio J
    Biochemistry; 1998 Feb; 37(5):1174-7. PubMed ID: 9477940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential nucleosome positioning on Xenopus oocyte and somatic 5 S RNA genes determines both TFIIIA and H1 binding: a mechanism for selective H1 repression.
    Panetta G; Buttinelli M; Flaus A; Richmond TJ; Rhodes D
    J Mol Biol; 1998 Sep; 282(3):683-97. PubMed ID: 9737930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of higher plant ribosomal 5S RNAs with Xenopus laevis transcriptional factor IIIA.
    Barciszewska MZ
    Acta Biochim Pol; 1994; 41(1):17-24. PubMed ID: 8030370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes.
    Miller J; McLachlan AD; Klug A
    EMBO J; 1985 Jun; 4(6):1609-14. PubMed ID: 4040853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nucleoskeleton and nucleo-cytoplasmic transport in oocytes and early development of Xenopus laevis.
    Rudt F; Firmbach-Kraft I; Petersen M; Pieler T; Stick R
    Int J Dev Biol; 1996 Feb; 40(1):273-8. PubMed ID: 8735938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The solution structure of ribosomal protein L36 from Thermus thermophilus reveals a zinc-ribbon-like fold.
    Härd T; Rak A; Allard P; Kloo L; Garber M
    J Mol Biol; 2000 Feb; 296(1):169-80. PubMed ID: 10656825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xenopus transcription factor IIIA. Evidence for heterogeneity of Zn2+ binding affinities and specific labeling of cysteine 287.
    Han MK; Cyran FP; Fisher MT; Kim SH; Ginsburg A
    J Biol Chem; 1990 Aug; 265(23):13792-9. PubMed ID: 2116409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformation states of Xenopus transcription factor IIIA.
    Hanas JS; Duke AL; Gaskins CJ
    Biochemistry; 1989 May; 28(9):4083-8. PubMed ID: 2502179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of FIII/YY1, a Xenopus laevis conserved zinc-finger protein binding to the first exon of L1 and L14 ribosomal protein genes.
    Pisaneschi G; Ceccotti S; Falchetti ML; Fiumicino S; Carnevali F; Beccari E
    Biochem Biophys Res Commun; 1994 Dec; 205(2):1236-42. PubMed ID: 7802655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal ion affinities of the zinc finger domains of the metal responsive element-binding transcription factor-1 (MTF1).
    Guerrerio AL; Berg JM
    Biochemistry; 2004 May; 43(18):5437-44. PubMed ID: 15122909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defining the binding site of Xenopus transcription factor IIIA on 5S RNA using truncated and chimeric 5S RNA molecules.
    Romaniuk PJ; de Stevenson IL; Wong HH
    Nucleic Acids Res; 1987 Mar; 15(6):2737-55. PubMed ID: 3562234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A variety of human autoantibodies recognizes in HeLa cells 2 proteins related to the TFIIIA factor of Xenopus laevis which regularizes the transcription of ribosomal 5S RNA].
    Lagaye S; Barque JP; Della Valle V; Danon F; Le Maire M; Denis H; Larsen CJ
    C R Acad Sci III; 1987; 304(15):393-7. PubMed ID: 3107764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5S RNA structure and interaction with transcription factor A. 2. Ribonuclease probe of the 7S particle from Xenopus laevis immature oocytes and RNA exchange properties of the 7S particle.
    Andersen J; Delihas N; Hanas JS; Wu CW
    Biochemistry; 1984 Nov; 23(24):5759-66. PubMed ID: 6084516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An elongated model of the Xenopus laevis transcription factor IIIA-5S ribosomal RNA complex derived from neutron scattering and hydrodynamic measurements.
    Timmins PA; Langowski J; Brown RS
    Nucleic Acids Res; 1988 Sep; 16(17):8633-44. PubMed ID: 3419928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.