These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 37967335)
21. A High-Energy Aqueous Manganese-Metal Hydride Hybrid Battery. Yang M; Chen R; Shen Y; Zhao X; Shen X Adv Mater; 2020 Sep; 32(38):e2001106. PubMed ID: 32803841 [TBL] [Abstract][Full Text] [Related]
22. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183 [TBL] [Abstract][Full Text] [Related]
23. Reverse Dual-Ion Battery Enabled by Reversing the Cation/Anion Storage Mechanism in an Aqueous ZnCl Sethi A; Kumar U A; Dhavale VM Chemphyschem; 2023 Jul; 24(14):e202300098. PubMed ID: 37221939 [TBL] [Abstract][Full Text] [Related]
24. Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. Wang X; Zhang Z; Xi B; Chen W; Jia Y; Feng J; Xiong S ACS Nano; 2021 Jun; 15(6):9244-9272. PubMed ID: 34081440 [TBL] [Abstract][Full Text] [Related]
25. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries. Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665 [TBL] [Abstract][Full Text] [Related]
26. Development, Essence, and Application of a Metal-Catalysis Battery. Feng Y; Yan S; Zhang X; Wang Y Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625 [TBL] [Abstract][Full Text] [Related]
27. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Kwon G; Ko Y; Kim Y; Kim K; Kang K Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126 [TBL] [Abstract][Full Text] [Related]
28. Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Ran Q; Shi H; Meng H; Zeng SP; Wan WB; Zhang W; Wen Z; Lang XY; Jiang Q Nat Commun; 2022 Jan; 13(1):576. PubMed ID: 35102182 [TBL] [Abstract][Full Text] [Related]
29. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries. Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006 [TBL] [Abstract][Full Text] [Related]
30. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Tang L; Peng H; Kang J; Chen H; Zhang M; Liu Y; Kim DH; Liu Y; Lin Z Chem Soc Rev; 2024 May; 53(10):4877-4925. PubMed ID: 38595056 [TBL] [Abstract][Full Text] [Related]
31. A High-Energy Four-Electron Zinc Battery Enabled by Evoking Full Electrochemical Activity in Copper Sulfide Electrode. Li S; Wei Z; Yang J; Chen G; Zhi C; Li H; Liu Z ACS Nano; 2023 Nov; 17(22):22478-22487. PubMed ID: 37934024 [TBL] [Abstract][Full Text] [Related]
32. Aqueous Dual-Ion Battery Based on a Hematite Anode with Exposed {1 0 4} Facets. Tao Y; Ding C; Tan D; Yu F; Wang F ChemSusChem; 2018 Dec; 11(24):4269-4274. PubMed ID: 30290060 [TBL] [Abstract][Full Text] [Related]
33. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte. Suo L; Borodin O; Sun W; Fan X; Yang C; Wang F; Gao T; Ma Z; Schroeder M; von Cresce A; Russell SM; Armand M; Angell A; Xu K; Wang C Angew Chem Int Ed Engl; 2016 Jun; 55(25):7136-41. PubMed ID: 27120336 [TBL] [Abstract][Full Text] [Related]
34. Quinone Electrodes for Alkali-Acid Hybrid Batteries. Li Y; Lu Y; Ni Y; Zheng S; Yan Z; Zhang K; Zhao Q; Chen J J Am Chem Soc; 2022 May; 144(18):8066-8072. PubMed ID: 35481353 [TBL] [Abstract][Full Text] [Related]
35. Recent Progress on Zinc-Ion Rechargeable Batteries. Xu W; Wang Y Nanomicro Lett; 2019 Oct; 11(1):90. PubMed ID: 34138036 [TBL] [Abstract][Full Text] [Related]
36. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries. Lei X; Liang X; Yang R; Zhang F; Wang C; Lee CS; Tang Y Small; 2022 Jun; 18(22):e2200418. PubMed ID: 35315220 [TBL] [Abstract][Full Text] [Related]
37. Strategy of Enhancing the Volumetric Energy Density for Lithium-Sulfur Batteries. Liu YT; Liu S; Li GR; Gao XP Adv Mater; 2021 Feb; 33(8):e2003955. PubMed ID: 33368710 [TBL] [Abstract][Full Text] [Related]
38. High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO Wang Y; Yang SZ; You Y; Feng Z; Zhu W; Gariépy V; Xia J; Commarieu B; Darwiche A; Guerfi A; Zaghib K ACS Appl Mater Interfaces; 2018 Feb; 10(8):7061-7068. PubMed ID: 29400442 [TBL] [Abstract][Full Text] [Related]
39. Recent Advances of Transition Metal Chalcogenides as Cathode Materials for Aqueous Zinc-Ion Batteries. Liu Y; Wu X Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234430 [TBL] [Abstract][Full Text] [Related]
40. Recent Progress and Future Advances on Aqueous Monovalent-Ion Batteries towards Safe and High-Power Energy Storage. Zhang F; Zhang W; Wexler D; Guo Z Adv Mater; 2022 Jun; 34(24):e2107965. PubMed ID: 35338665 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]