These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37967340)
1. Effect of Sodium Phosphate Coating on Cu and Mg-Substituted P2-Na Lee SY; Kim YS; Park S; Lee YS; Park YI ACS Appl Mater Interfaces; 2023 Nov; 15(47):54530-54538. PubMed ID: 37967340 [TBL] [Abstract][Full Text] [Related]
2. Promoting threshold voltage of P2-Na Peng X; Zhang H; Yang C; Lui Z; Lin Z; Lei Y; Zhang S; Li S; Zhang S J Colloid Interface Sci; 2024 Apr; 659():422-431. PubMed ID: 38183808 [TBL] [Abstract][Full Text] [Related]
3. Improved Cycling Performance of P2-Na Yuan S; Qi J; Jiang M; Cui G; Liao XZ; Liu X; Tan G; Wen W; He YS; Ma ZF ACS Appl Mater Interfaces; 2021 Jan; 13(3):3793-3804. PubMed ID: 33448216 [TBL] [Abstract][Full Text] [Related]
4. Polypyrrole-coated sodium manganate microspheres cathode for superior performance Sodium-ion batteries. Zhang P; Weng J; Lu Z; Li L; Ji B; Ding M; Sun Y; Yuan W; Zhou P; Cong H J Colloid Interface Sci; 2024 Nov; 674():428-436. PubMed ID: 38941935 [TBL] [Abstract][Full Text] [Related]
5. Ca/Li Synergetic-Doped Na Xiao K; Zhao B; Bai J; Mao Y; Wang P; Wang S; Zhu X; Sun Y Chemistry; 2024 Dec; 30(69):e202402313. PubMed ID: 39320970 [TBL] [Abstract][Full Text] [Related]
6. P2-Type Na0.67Ni0.23Mg0.1Mn0.67O2 as a High-Performance Cathode for a Sodium-Ion Battery. Hou H; Gan B; Gong Y; Chen N; Sun C Inorg Chem; 2016 Sep; 55(17):9033-7. PubMed ID: 27513524 [TBL] [Abstract][Full Text] [Related]
7. Probing the Structural Transition Kinetics and Charge Compensation of the P2-Na Shi Y; Li S; Gao A; Zheng J; Zhang Q; Lu X; Gu L; Cao D ACS Appl Mater Interfaces; 2019 Jul; 11(27):24122-24131. PubMed ID: 31187622 [TBL] [Abstract][Full Text] [Related]
8. Enhanced cycling stability and storage performance of Na Li X; Kong Q; An X; Zhang J; Wang Q; Yao W J Colloid Interface Sci; 2023 Mar; 633():82-91. PubMed ID: 36436350 [TBL] [Abstract][Full Text] [Related]
9. Stabilizing P2-Type Ni-Mn Oxides as High-Voltage Cathodes by a Doping-Integrated Coating Strategy Based on Zinc for Sodium-Ion Batteries. Zhang F; Liao J; Xu L; Wu W; Wu X ACS Appl Mater Interfaces; 2021 Sep; 13(34):40695-40704. PubMed ID: 34427079 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Stability Effect of the Co-Substituted P2-Na Li W; Yao Z; Zhang S; Wang X; Xia X; Gu C; Tu J ACS Appl Mater Interfaces; 2020 Sep; 12(37):41477-41484. PubMed ID: 32812742 [TBL] [Abstract][Full Text] [Related]
11. Internal Vanadium Doping and External Modification Design of P2-Type Layered Mn-Based Oxides as Competitive Cathodes toward Sodium-Ion Batteries. Li X; Lai X; Kong Q; An X; Zhan J; Li X; Liu X; Yao W Chemistry; 2024 May; 30(25):e202400088. PubMed ID: 38407545 [TBL] [Abstract][Full Text] [Related]
12. P2-Type Moisture-Stable and High-Voltage-Tolerable Cathodes for High-Energy and Long-Life Sodium-Ion Batteries. Yuan S; Yu L; Qian G; Xie Y; Guo P; Cui G; Ma J; Ren X; Xu Z; Lee SJ; Lee JS; Liu Y; Ren Y; Li L; Tan G; Liao X Nano Lett; 2023 Mar; 23(5):1743-1751. PubMed ID: 36811529 [TBL] [Abstract][Full Text] [Related]
13. Role of Lithium Doping in P2-Na Xie Y; Gabriel E; Fan L; Hwang I; Li X; Zhu H; Ren Y; Sun C; Pipkin J; Dustin M; Li M; Chen Z; Lee E; Xiong H Chem Mater; 2021 Jun; 33(12):4445-4455. PubMed ID: 34276133 [TBL] [Abstract][Full Text] [Related]
14. Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes. Fu H; Wang YP; Fan G; Guo S; Xie X; Cao X; Lu B; Long M; Zhou J; Liang S Chem Sci; 2022 Jan; 13(3):726-736. PubMed ID: 35173937 [TBL] [Abstract][Full Text] [Related]
15. Interfacial Engineering of P2-Type Ni/Mn-Based Layered Oxides by a Facile Water-Washing Method for Superior Sodium-Ion Batteries. Song M; Ye D; Li W; Lu C; Wu W; Wu X ACS Appl Mater Interfaces; 2024 Apr; 16(13):16120-16131. PubMed ID: 38511936 [TBL] [Abstract][Full Text] [Related]
16. Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content. Bao S; Luo SH; Wang ZY; Yan SX; Wang Q J Colloid Interface Sci; 2019 May; 544():164-171. PubMed ID: 30836258 [TBL] [Abstract][Full Text] [Related]
17. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries. Wu X; Xu GL; Zhong G; Gong Z; McDonald MJ; Zheng S; Fu R; Chen Z; Amine K; Yang Y ACS Appl Mater Interfaces; 2016 Aug; 8(34):22227-37. PubMed ID: 27494351 [TBL] [Abstract][Full Text] [Related]
18. A Customized Strategy Realizes Stable Cycle of Large-Capacity and High-Voltage Layered Cathode for Sodium-Ion Batteries. Peng B; Zhou Z; Shi J; Xu S; Yang J; Xu C; Zuo D; Xu J; Ma L; Guo S; Zhou H Angew Chem Int Ed Engl; 2024 Dec; 63(50):e202411618. PubMed ID: 39299916 [TBL] [Abstract][Full Text] [Related]
19. Constructing a Size-Controllable Spherical P2-Type Layered Oxides Cathode That Achieves Practicable Sodium-Ion Batteries. Yin S; Tao Z; Zhang Y; Zhang X; Yu L; Ji F; Ma X; Yuan G; Zhang G ACS Appl Mater Interfaces; 2024 May; 16(20):26340-26347. PubMed ID: 38726691 [TBL] [Abstract][Full Text] [Related]
20. Single-Crystal Growth of P2-Type Layered Oxides with Increased Exposure of {010} Planes for High-Performance Sodium-Ion Batteries. Zhang L; Huang J; Song M; Lu C; Wu W; Wu X ACS Appl Mater Interfaces; 2023 Oct; 15(40):47037-47048. PubMed ID: 37769162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]