BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37967365)

  • 1. Redox Characterization of the Complex Molybdenum Enzyme Formate Dehydrogenase from
    Harmer JR; Hakopian S; Niks D; Hille R; Bernhardt PV
    J Am Chem Soc; 2023 Nov; 145(47):25850-25863. PubMed ID: 37967365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Reversible Electrochemical Interconversion of Formate and CO
    Kalimuthu P; Hakopian S; Niks D; Hille R; Bernhardt PV
    J Phys Chem B; 2023 Oct; 127(39):8382-8392. PubMed ID: 37728992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from
    Young T; Niks D; Hakopian S; Tam TK; Yu X; Hille R; Blaha GM
    J Biol Chem; 2020 May; 295(19):6570-6585. PubMed ID: 32249211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deconvolution of reduction potentials of formate dehydrogenase from Cupriavidus necator.
    Walker LM; Li B; Niks D; Hille R; Elliott SJ
    J Biol Inorg Chem; 2019 Sep; 24(6):889-898. PubMed ID: 31463592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient reduction of CO
    Yu X; Niks D; Mulchandani A; Hille R
    J Biol Chem; 2017 Oct; 292(41):16872-16879. PubMed ID: 28784661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The air-inactivation of formate dehydrogenase FdsDABG from Cupriavidus necator.
    Hakopian S; Niks D; Hille R
    J Inorg Biochem; 2022 Jun; 231():111788. PubMed ID: 35313132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha.
    Niks D; Duvvuru J; Escalona M; Hille R
    J Biol Chem; 2016 Jan; 291(3):1162-74. PubMed ID: 26553877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Formate from CO
    Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A
    Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase.
    Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG
    J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase.
    Bassegoda A; Madden C; Wakerley DW; Reisner E; Hirst J
    J Am Chem Soc; 2014 Nov; 136(44):15473-6. PubMed ID: 25325406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formate Dehydrogenase Mimics as Catalysts for Carbon Dioxide Reduction.
    Fogeron T; Li Y; Fontecave M
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor.
    Jayathilake BS; Bhattacharya S; Vaidehi N; Narayanan SR
    Acc Chem Res; 2019 Mar; 52(3):676-685. PubMed ID: 30741524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.
    Hartmann T; Schrapers P; Utesch T; Nimtz M; Rippers Y; Dau H; Mroginski MA; Haumann M; Leimkühler S
    Biochemistry; 2016 Apr; 55(16):2381-9. PubMed ID: 27054466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox potentials elucidate the electron transfer pathway of NAD
    Duffus BR; Gauglitz M; Teutloff C; Leimkühler S
    J Inorg Biochem; 2024 Apr; 253():112487. PubMed ID: 38306887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Reisner E; Hirst J
    J Am Chem Soc; 2017 Jul; 139(29):9927-9936. PubMed ID: 28635274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum and tungsten-dependent formate dehydrogenases.
    Maia LB; Moura JJ; Moura I
    J Biol Inorg Chem; 2015 Mar; 20(2):287-309. PubMed ID: 25476858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive activation of CO
    Niks D; Hille R
    Methods Enzymol; 2018; 613():277-295. PubMed ID: 30509470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of formate oxidation by metal-dependent formate dehydrogenases.
    Mota CS; Rivas MG; Brondino CD; Moura I; Moura JJ; González PJ; Cerqueira NM
    J Biol Inorg Chem; 2011 Dec; 16(8):1255-68. PubMed ID: 21773834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction.
    Rivas MG; González PJ; Brondino CD; Moura JJ; Moura I
    J Inorg Biochem; 2007 Nov; 101(11-12):1617-22. PubMed ID: 17574676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.