BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37967558)

  • 1. Anticancer benzoxaboroles block pre-mRNA processing by directly inhibiting CPSF3.
    Tao Y; Budhipramono A; Huang J; Fang M; Xie S; Kim J; Khivansara V; Dominski Z; Tong L; De Brabander JK; Nijhawan D
    Cell Chem Biol; 2024 Jan; 31(1):139-149.e14. PubMed ID: 37967558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3.
    Wall RJ; Rico E; Lukac I; Zuccotto F; Elg S; Gilbert IH; Freund Y; Alley MRK; Field MC; Wyllie S; Horn D
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9616-9621. PubMed ID: 30185555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JTE-607, a multiple cytokine production inhibitor, targets CPSF3 and inhibits pre-mRNA processing.
    Kakegawa J; Sakane N; Suzuki K; Yoshida T
    Biochem Biophys Res Commun; 2019 Oct; 518(1):32-37. PubMed ID: 31399191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue.
    Sonoiki E; Ng CL; Lee MC; Guo D; Zhang YK; Zhou Y; Alley MR; Ahyong V; Sanz LM; Lafuente-Monasterio MJ; Dong C; Schupp PG; Gut J; Legac J; Cooper RA; Gamo FJ; DeRisi J; Freund YR; Fidock DA; Rosenthal PJ
    Nat Commun; 2017 Mar; 8():14574. PubMed ID: 28262680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CSR1 induces cell death through inactivation of CPSF3.
    Zhu ZH; Yu YP; Shi YK; Nelson JB; Luo JH
    Oncogene; 2009 Jan; 28(1):41-51. PubMed ID: 18806823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing.
    Begolo D; Vincent IM; Giordani F; Pöhner I; Witty MJ; Rowan TG; Bengaly Z; Gillingwater K; Freund Y; Wade RC; Barrett MP; Clayton C
    PLoS Pathog; 2018 Sep; 14(9):e1007315. PubMed ID: 30252911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic targeting of CPSF3-dependent transcriptional termination in ovarian cancer.
    Shen P; Ye K; Xiang H; Zhang Z; He Q; Zhang X; Cai MC; Chen J; Sun Y; Lin L; Qi C; Zhang M; Cheung LWT; Shi T; Yin X; Li Y; Di W; Zang R; Tan L; Zhuang G
    Sci Adv; 2023 Nov; 9(47):eadj0123. PubMed ID: 37992178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting
    Palencia A; Bougdour A; Brenier-Pinchart MP; Touquet B; Bertini RL; Sensi C; Gay G; Vollaire J; Josserand V; Easom E; Freund YR; Pelloux H; Rosenthal PJ; Cusack S; Hakimi MA
    EMBO Mol Med; 2017 Mar; 9(3):385-394. PubMed ID: 28148555
    [No Abstract]   [Full Text] [Related]  

  • 9. CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing's sarcoma.
    Ross NT; Lohmann F; Carbonneau S; Fazal A; Weihofen WA; Gleim S; Salcius M; Sigoillot F; Henault M; Carl SH; Rodríguez-Molina JB; Miller HR; Brittain SM; Murphy J; Zambrowski M; Boynton G; Wang Y; Chen A; Molind GJ; Wilbertz JH; Artus-Revel CG; Jia M; Akinjiyan FA; Turner J; Knehr J; Carbone W; Schuierer S; Reece-Hoyes JS; Xie K; Saran C; Williams ET; Roma G; Spencer M; Jenkins J; George EL; Thomas JR; Michaud G; Schirle M; Tallarico J; Passmore LA; Chao JA; Beckwith REJ
    Nat Chem Biol; 2020 Jan; 16(1):50-59. PubMed ID: 31819276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease.
    Liu H; Moore CL
    Trends Biochem Sci; 2021 Sep; 46(9):772-784. PubMed ID: 33941430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent molecular insights into canonical pre-mRNA 3'-end processing.
    Sun Y; Hamilton K; Tong L
    Transcription; 2020 Apr; 11(2):83-96. PubMed ID: 32522085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-captured inhibition of pre-mRNA processing activity by CPSF3 controls
    Swale C; Bougdour A; Gnahoui-David A; Tottey J; Georgeault S; Laurent F; Palencia A; Hakimi MA
    Sci Transl Med; 2019 Nov; 11(517):. PubMed ID: 31694928
    [No Abstract]   [Full Text] [Related]  

  • 13. Chalcone-benzoxaborole hybrids as novel anticancer agents.
    Zhang J; Yang F; Qiao Z; Zhu M; Zhou H
    Bioorg Med Chem Lett; 2016 Dec; 26(23):5797-5801. PubMed ID: 28327308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CPSF3 inhibition blocks pancreatic cancer cell proliferation through disruption of core histone mRNA processing.
    Alahmari AA; Chaubey AH; Jonnakuti VS; Tisdale AA; Schwarz CD; Cornwell AC; Maraszek KE; Paterson EJ; Kim M; Venkat S; Gomez EC; Wang J; Gurova KV; Yalamanchili HK; Feigin ME
    RNA; 2024 Feb; 30(3):281-297. PubMed ID: 38191171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease.
    Mandel CR; Kaneko S; Zhang H; Gebauer D; Vethantham V; Manley JL; Tong L
    Nature; 2006 Dec; 444(7121):953-6. PubMed ID: 17128255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LncRNA CASC9 interacts with CPSF3 to regulate TGF-β signaling in colorectal cancer.
    Luo K; Geng J; Zhang Q; Xu Y; Zhou X; Huang Z; Shi KQ; Pan C; Wu J
    J Exp Clin Cancer Res; 2019 Jun; 38(1):249. PubMed ID: 31186036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An examination of the metal ion content in the active sites of human endonucleases CPSF73 and INTS11.
    Huang J; Liu X; Sun Y; Li Z; Lin MH; Hamilton K; Mandel CR; Sandmeir F; Conti E; Oyala PH; Tong L
    J Biol Chem; 2023 Apr; 299(4):103047. PubMed ID: 36822327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RBBP6 activates the pre-mRNA 3' end processing machinery in humans.
    Boreikaite V; Elliott TS; Chin JW; Passmore LA
    Genes Dev; 2022 Feb; 36(3-4):210-224. PubMed ID: 35177536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human immunodeficiency virus type 1 Tat increases the expression of cleavage and polyadenylation specificity factor 73-kilodalton subunit modulating cellular and viral expression.
    Calzado MA; Sancho R; Muñoz E
    J Virol; 2004 Jul; 78(13):6846-54. PubMed ID: 15194760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleavage and polyadenylation-specific factor 3 induces cell cycle arrest via PI3K/Akt/GSK-3β signaling pathways and predicts a negative prognosis in hepatocellular carcinoma.
    Li N; Jiang S; Fu R; Lv J; Yao J; Mai J; Hua X; Chen H; Liu J; Lu M
    Biomark Med; 2021 Apr; 15(5):347-358. PubMed ID: 33666519
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.