These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3796769)

  • 21. A furan fatty acid and indoxyl sulfate are the putative inhibitors of thyroxine hepatocyte transport in uremia.
    Lim CF; Bernard BF; de Jong M; Docter R; Krenning EP; Hennemann G
    J Clin Endocrinol Metab; 1993 Feb; 76(2):318-24. PubMed ID: 8432774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient removal of albumin-bound furancarboxylic acid by protein-leaking hemodialysis.
    Niwa T; Asada H; Tsutsui S; Miyazaki T
    Am J Nephrol; 1995; 15(6):463-7. PubMed ID: 8546166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A major endogenous ligand substance involved in renal failure.
    Mabuchi H; Nakahashi H
    Nephron; 1988; 49(4):277-80. PubMed ID: 3412543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Major albumin-associated fluorescent substance in uremic serum.
    Mabuchi H
    Nephron; 1988; 48(4):328-9. PubMed ID: 3362283
    [No Abstract]   [Full Text] [Related]  

  • 25. Interaction between two dicarboxylate endogenous substances, bilirubin and an uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, on human serum albumin.
    Tsutsumi Y; Maruyama T; Takadate A; Goto M; Matsunaga H; Otagiri M
    Pharm Res; 1999 Jun; 16(6):916-23. PubMed ID: 10397614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient removal of albumin-bound furancarboxylic acid, an inhibitor of erythropoiesis, by continuous ambulatory peritoneal dialysis.
    Niwa T; Yazawa T; Kodama T; Uehara Y; Maeda K; Yamada K
    Nephron; 1990; 56(3):241-5. PubMed ID: 2077405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excretion of the uraemic metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid in human urine.
    McTigue JJ; Henderson SJ; Lindup WE
    Nephron; 1990; 55(2):214-5. PubMed ID: 2362637
    [No Abstract]   [Full Text] [Related]  

  • 28. Plasma clearance in the rat of a furan dicarboxylic acid which accumulates in uremia.
    Costigan MG; Lindup WE
    Kidney Int; 1996 Mar; 49(3):634-8. PubMed ID: 8648903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasma protein binding in uremia: extraction and characterization of an inhibitor.
    Depner TA; Gulyassy PF
    Kidney Int; 1980 Jul; 18(1):86-94. PubMed ID: 7218662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of uremic toxins and nonesterified fatty acids on drug and thyroid hormone binding in serum.
    Lim CF; Stockigt JR
    Clin Chem; 1998 Nov; 44(11):2380-1. PubMed ID: 9799777
    [No Abstract]   [Full Text] [Related]  

  • 31. A novel UPLC-MS-MS method for simultaneous determination of seven uremic retention toxins with cardiovascular relevance in chronic kidney disease patients.
    Boelaert J; Lynen F; Glorieux G; Eloot S; Van Landschoot M; Waterloos MA; Sandra P; Vanholder R
    Anal Bioanal Chem; 2013 Feb; 405(6):1937-47. PubMed ID: 23307120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and physicochemical properties of the furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, an inhibitor of plasma protein binding in uraemia.
    Costigan MG; Gilchrist TL; Lindup WE
    J Pharm Pharmacol; 1996 Jun; 48(6):635-40. PubMed ID: 8832500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unexpected suppression of free phenytoin concentration by salicylate in uremic sera due to the presence of inhibitors: MALDI mass spectrometric determination of molecular weight range of inhibitors.
    Biddle DA; Wells A; Dasgupta A
    Life Sci; 2000; 66(2):143-51. PubMed ID: 10666010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gas chromatographic and gas chromatographic-mass spectrometric analysis of organic acids in plasma of patients with chronic renal failure.
    Liebich HM; Pickert A; Tetschner B
    J Chromatogr; 1984 Apr; 289():259-66. PubMed ID: 6547446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of uremic serum and uremic toxins on hepatic uptake of digoxin.
    Tsujimoto M; Kinoshita Y; Hirata S; Otagiri M; Ohtani H; Sawada Y
    Ther Drug Monit; 2008 Oct; 30(5):576-82. PubMed ID: 18708994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast atom bombardment mass spectrometric determination of the molecular weight range of uremic compounds that displace phenytoin from protein binding: absence of midmolecular uremic toxins.
    Dasgupta A; Malik S
    Am J Nephrol; 1994; 14(3):162-8. PubMed ID: 7977474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Altered protein binding of diphenylhydantoin in uremic plasma.
    Blum MR; Riegelman S; Becker CE
    N Engl J Med; 1972 Jan; 286(2):109. PubMed ID: 5006870
    [No Abstract]   [Full Text] [Related]  

  • 38. Renal organic acid transport: uptake by rat kidney slices of a furan dicarboxylic acid which inhibits plasma protein binding of acidic ligands in uremia.
    Henderson SJ; Lindup WE
    J Pharmacol Exp Ther; 1992 Oct; 263(1):54-60. PubMed ID: 1403803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of hippuric acid and furanic acid in serum of dialysis patients and control persons by high-performance liquid chromatography.
    Pickert A; Bäuerle A; Liebich HM
    J Chromatogr; 1989 Oct; 495():95-104. PubMed ID: 2613830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hippuric acid and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid in serum and urine. Analytical approaches and clinical relevance in kidney diseases.
    Liebich HM; Bubeck JI; Pickert A; Wahl G; Scheiter A
    J Chromatogr; 1990 Feb; 500():615-27. PubMed ID: 2329153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.