BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 37967694)

  • 1. Direct measurements of collagen fiber recruitment in the posterior pole of the eye.
    Lee PY; Fryc G; Gnalian J; Wang B; Hua Y; Waxman S; Zhong F; Yang B; Sigal IA
    Acta Biomater; 2024 Jan; 173():135-147. PubMed ID: 37967694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurements of collagen fiber recruitment in the posterior pole of the eye.
    Lee PY; Fryc G; Gnalian J; Hua Y; Waxman S; Zhong F; Yang B; Sigal IA
    bioRxiv; 2023 May; ():. PubMed ID: 37215028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen fiber recruitment: A microstructural basis for the nonlinear response of the posterior pole of the eye to increases in intraocular pressure.
    Jan NJ; Sigal IA
    Acta Biomater; 2018 May; 72():295-305. PubMed ID: 29574185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretch-Induced Uncrimping of Equatorial Sclera Collagen Bundles.
    Jan NJ; Lee PY; Wallace J; Iasella M; Gogola A; Wang B; Sigal IA
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36459150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time imaging of optic nerve head collagen microstructure and biomechanics using instant polarized light microscopy.
    Lee PY; Yang B; Hua Y; Waxman S; Zhu Z; Ji F; Sigal IA
    Exp Eye Res; 2022 Apr; 217():108967. PubMed ID: 35114213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Who bears the load? IOP-induced collagen fiber recruitment over the corneoscleral shell.
    Foong TY; Hua Y; Amini R; Sigal IA
    Exp Eye Res; 2023 May; 230():109446. PubMed ID: 36935071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural Crimp of the Lamina Cribrosa and Peripapillary Sclera Collagen Fibers.
    Jan NJ; Gomez C; Moed S; Voorhees AP; Schuman JS; Bilonick RA; Sigal IA
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3378-3388. PubMed ID: 28687851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crimp around the globe; patterns of collagen crimp across the corneoscleral shell.
    Jan NJ; Brazile BL; Hu D; Grube G; Wallace J; Gogola A; Sigal IA
    Exp Eye Res; 2018 Jul; 172():159-170. PubMed ID: 29660327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inflation response of the human lamina cribrosa and sclera: Analysis of deformation and interaction.
    Midgett DE; Jefferys JL; Quigley HA; Nguyen TD
    Acta Biomater; 2020 Apr; 106():225-241. PubMed ID: 32044458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D or not 2D? Mapping the in-depth inclination of the collagen fibers of the corneoscleral shell.
    Ji F; Quinn M; Hua Y; Lee PY; Sigal IA
    Exp Eye Res; 2023 Dec; 237():109701. PubMed ID: 37898229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin Lamina Cribrosa Beams Have Different Collagen Microstructure Than Thick Beams.
    Brazile BL; Hua Y; Jan NJ; Wallace J; Gogola A; Sigal IA
    Invest Ophthalmol Vis Sci; 2018 Sep; 59(11):4653-4661. PubMed ID: 30372734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen Architecture of the Posterior Pole: High-Resolution Wide Field of View Visualization and Analysis Using Polarized Light Microscopy.
    Jan NJ; Lathrop K; Sigal IA
    Invest Ophthalmol Vis Sci; 2017 Feb; 58(2):735-744. PubMed ID: 28146238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications.
    Voorhees AP; Jan NJ; Hua Y; Yang B; Sigal IA
    Acta Biomater; 2018 Oct; 79():113-122. PubMed ID: 30142444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A direct fiber approach to model sclera collagen architecture and biomechanics.
    Ji F; Bansal M; Wang B; Hua Y; Islam MR; Matuschke F; Axer M; Sigal IA
    Exp Eye Res; 2023 Jul; 232():109510. PubMed ID: 37207867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa.
    Voorhees AP; Jan NJ; Sigal IA
    Acta Biomater; 2017 Aug; 58():278-290. PubMed ID: 28528864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach.
    Grytz R; Meschke G; Jonas JB
    Biomech Model Mechanobiol; 2011 Jun; 10(3):371-82. PubMed ID: 20628781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripapillary and posterior scleral mechanics--part I: development of an anisotropic hyperelastic constitutive model.
    Girard MJ; Downs JC; Burgoyne CF; Suh JK
    J Biomech Eng; 2009 May; 131(5):051011. PubMed ID: 19388781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Patterns and Age-Related Changes of the Collagen Crimp in the Human Cornea and Sclera.
    Gogola A; Jan NJ; Brazile B; Lam P; Lathrop KL; Chan KC; Sigal IA
    Invest Ophthalmol Vis Sci; 2018 Jun; 59(7):2987-2998. PubMed ID: 30025116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniaxial properties of ascending aortic aneurysms in light of effective stretch.
    He X; Auricchio F; Morganti S; Lu J
    Acta Biomater; 2021 Dec; 136():306-313. PubMed ID: 34560300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa.
    Coudrillier B; Campbell IC; Read AT; Geraldes DM; Vo NT; Feola A; Mulvihill J; Albon J; Abel RL; Ethier CR
    Invest Ophthalmol Vis Sci; 2016 May; 57(6):2666-77. PubMed ID: 27183053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.