These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Potential mechanisms of cancer stem-like progenitor T-cell bio-behaviours. Ni L Clin Transl Med; 2024 Aug; 14(8):e1817. PubMed ID: 39169517 [TBL] [Abstract][Full Text] [Related]
4. In vitro modeling of CD8 Wu JE; Manne S; Ngiow SF; Baxter AE; Huang H; Freilich E; Clark ML; Lee JH; Chen Z; Khan O; Staupe RP; Huang YJ; Shi J; Giles JR; Wherry EJ Sci Immunol; 2023 Aug; 8(86):eade3369. PubMed ID: 37595022 [TBL] [Abstract][Full Text] [Related]
5. PD-1 Immune Checkpoint Blockade and PSGL-1 Inhibition Synergize to Reinvigorate Exhausted T Cells. Viramontes KM; Neubert EN; DeRogatis JM; Tinoco R Front Immunol; 2022; 13():869768. PubMed ID: 35774790 [TBL] [Abstract][Full Text] [Related]
6. TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision. Chen Z; Ji Z; Ngiow SF; Manne S; Cai Z; Huang AC; Johnson J; Staupe RP; Bengsch B; Xu C; Yu S; Kurachi M; Herati RS; Vella LA; Baxter AE; Wu JE; Khan O; Beltra JC; Giles JR; Stelekati E; McLane LM; Lau CW; Yang X; Berger SL; Vahedi G; Ji H; Wherry EJ Immunity; 2019 Nov; 51(5):840-855.e5. PubMed ID: 31606264 [TBL] [Abstract][Full Text] [Related]
7. Progenitor-like exhausted SPRY1 Liu Z; Zhang Y; Ma N; Yang Y; Ma Y; Wang F; Wang Y; Wei J; Chen H; Tartarone A; Velotta JB; Dayyani F; Gabriel E; Wakefield CJ; Kidane B; Carbonelli C; Long L; Liu Z; Su J; Li Z Cancer Cell; 2023 Nov; 41(11):1852-1870.e9. PubMed ID: 37832554 [TBL] [Abstract][Full Text] [Related]
8. CD8 Dolina JS; Van Braeckel-Budimir N; Thomas GD; Salek-Ardakani S Front Immunol; 2021; 12():715234. PubMed ID: 34354714 [TBL] [Abstract][Full Text] [Related]
9. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens. Yim S; Hwang W; Han N; Lee D Front Immunol; 2022; 13():884561. PubMed ID: 35651625 [TBL] [Abstract][Full Text] [Related]
10. Metabolic reprogramming of terminally exhausted CD8 Guo Y; Xie YQ; Gao M; Zhao Y; Franco F; Wenes M; Siddiqui I; Bevilacqua A; Wang H; Yang H; Feng B; Xie X; Sabatel CM; Tschumi B; Chaiboonchoe A; Wang Y; Li W; Xiao W; Held W; Romero P; Ho PC; Tang L Nat Immunol; 2021 Jun; 22(6):746-756. PubMed ID: 34031618 [TBL] [Abstract][Full Text] [Related]
11. Hierarchical transcriptional network governing heterogeneous T cell exhaustion and its implications for immune checkpoint blockade. Tian W; Qin G; Jia M; Li W; Cai W; Wang H; Zhao Y; Bao X; Wei W; Zhang Y; Shao Q Front Immunol; 2023; 14():1198551. PubMed ID: 37398674 [TBL] [Abstract][Full Text] [Related]
12. ICOS limits memory-like properties and function of exhausted PD-1 Humblin E; Korpas I; Prokhnevska N; Vaidya A; Lu J; van der Heide V; Filipescu D; Bobrowski T; Marks A; Park MD; Bernstein E; Brown BD; Lujambio A; Dominguez-Sola D; Rosenberg BR; Kamphorst AO bioRxiv; 2024 Sep; ():. PubMed ID: 39345453 [TBL] [Abstract][Full Text] [Related]
13. Sustained CD28 costimulation is required for self-renewal and differentiation of TCF-1 Humblin E; Korpas I; Lu J; Filipescu D; van der Heide V; Goldstein S; Vaidya A; Soares-Schanoski A; Casati B; Selvan ME; Gümüş ZH; Wieland A; Corrado M; Cohen-Gould L; Bernstein E; Homann D; Chipuk J; Kamphorst AO Sci Immunol; 2023 Aug; 8(86):eadg0878. PubMed ID: 37624910 [TBL] [Abstract][Full Text] [Related]
14. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Dähling S; Mansilla AM; Knöpper K; Grafen A; Utzschneider DT; Ugur M; Whitney PG; Bachem A; Arampatzi P; Imdahl F; Kaisho T; Zehn D; Klauschen F; Garbi N; Kallies A; Saliba AE; Gasteiger G; Bedoui S; Kastenmüller W Immunity; 2022 Apr; 55(4):656-670.e8. PubMed ID: 35366396 [TBL] [Abstract][Full Text] [Related]
15. Use of Mass Cytometry to Profile Human T Cell Exhaustion. Winkler F; Bengsch B Front Immunol; 2019; 10():3039. PubMed ID: 32038613 [TBL] [Abstract][Full Text] [Related]