These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 37968495)
1. Evaluating the chaos game representation of proteins for applications in machine learning models: prediction of antibody affinity and specificity as a case study. Arsiccio A; Stratta L; Menzen T J Mol Model; 2023 Nov; 29(12):377. PubMed ID: 37968495 [TBL] [Abstract][Full Text] [Related]
2. Deep learning on chaos game representation for proteins. Löchel HF; Eger D; Sperlea T; Heider D Bioinformatics; 2020 Jan; 36(1):272-279. PubMed ID: 31225868 [TBL] [Abstract][Full Text] [Related]
3. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory. Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771 [TBL] [Abstract][Full Text] [Related]
4. Multifarious aspects of the chaos game representation and its applications in biological sequence analysis. Kania A; Sarapata K Comput Biol Med; 2022 Dec; 151(Pt A):106243. PubMed ID: 36335814 [TBL] [Abstract][Full Text] [Related]
5. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
6. Splice sites detection using chaos game representation and neural network. Hoang T; Yin C; Yau SS Genomics; 2020 Mar; 112(2):1847-1852. PubMed ID: 31704313 [TBL] [Abstract][Full Text] [Related]
7. Chaos game representation and its applications in bioinformatics. Löchel HF; Heider D Comput Struct Biotechnol J; 2021; 19():6263-6271. PubMed ID: 34900136 [TBL] [Abstract][Full Text] [Related]
8. 3-D Deconvolutional Networks for the Unsupervised Representation Learning of Human Motions. Zhang CY; Xiao YY; Lin JC; Chen CLP; Liu W; Tong YH IEEE Trans Cybern; 2022 Jan; 52(1):398-410. PubMed ID: 32149670 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis and prediction of nucleosome positioning using integrative feature representation and machine learning algorithms. Han GS; Li Q; Li Y BMC Bioinformatics; 2021 Jun; 22(Suppl 6):129. PubMed ID: 34078256 [TBL] [Abstract][Full Text] [Related]
10. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space. Makowski EK; Kinnunen PC; Huang J; Wu L; Smith MD; Wang T; Desai AA; Streu CN; Zhang Y; Zupancic JM; Schardt JS; Linderman JJ; Tessier PM Nat Commun; 2022 Jul; 13(1):3788. PubMed ID: 35778381 [TBL] [Abstract][Full Text] [Related]
11. Comparative Study of Machine-Learning Frameworks for the Elaboration of Feed-Forward Neural Networks by Varying the Complexity of Impedimetric Datasets Synthesized Using Eddy Current Sensors for the Characterization of Bi-Metallic Coins. Munjal R; Arif S; Wendler F; Kanoun O Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214213 [TBL] [Abstract][Full Text] [Related]
12. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology. Hudson IL Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Protein Subcellular Localization Based on Fusion of Multi-view Features. Li B; Cai L; Liao B; Fu X; Bing P; Yang J Molecules; 2019 Mar; 24(5):. PubMed ID: 30845684 [TBL] [Abstract][Full Text] [Related]
14. Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications. Feinstein J; Shi W; Ramanujam J; Brylinski M Methods Mol Biol; 2021; 2266():299-312. PubMed ID: 33759134 [TBL] [Abstract][Full Text] [Related]
15. Persistent spectral based ensemble learning (PerSpect-EL) for protein-protein binding affinity prediction. Wee J; Xia K Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189639 [TBL] [Abstract][Full Text] [Related]
16. Gnocis: An integrated system for interactive and reproducible analysis and modelling of cis-regulatory elements in Python 3. Bredesen-Aa BA; Rehmsmeier M PLoS One; 2022; 17(9):e0274338. PubMed ID: 36084008 [TBL] [Abstract][Full Text] [Related]
17. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery. Lin S; Shi C; Chen J BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406 [TBL] [Abstract][Full Text] [Related]
18. Predicting protein solubility by the general form of Chou's pseudo amino acid composition: approached from chaos game representation and fractal dimension. Niu XH; Hu XH; Shi F; Xia JB Protein Pept Lett; 2012 Sep; 19(9):940-8. PubMed ID: 22486614 [TBL] [Abstract][Full Text] [Related]
19. How to approach machine learning-based prediction of drug/compound-target interactions. Atas Guvenilir H; Doğan T J Cheminform; 2023 Feb; 15(1):16. PubMed ID: 36747300 [TBL] [Abstract][Full Text] [Related]
20. Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features. Harmalkar A; Rao R; Richard Xie Y; Honer J; Deisting W; Anlahr J; Hoenig A; Czwikla J; Sienz-Widmann E; Rau D; Rice AJ; Riley TP; Li D; Catterall HB; Tinberg CE; Gray JJ; Wei KY MAbs; 2023; 15(1):2163584. PubMed ID: 36683173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]