These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 37968563)

  • 1. Activating Organic Electrode via Trace Dissolved Organic Molecules.
    Huang X; Qiu X; Wang W; Li J; Li Z; Yu X; Ma J; Wang Y
    J Am Chem Soc; 2023 Nov; 145(47):25604-25613. PubMed ID: 37968563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards High-Performance Aqueous Zinc Batteries via a Semi-Conductive Bipolar-Type Polymer Cathode.
    Yan L; Zhu Q; Qi Y; Xu J; Peng Y; Shu J; Ma J; Wang Y
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202211107. PubMed ID: 36050284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Long-Life Aqueous Zinc-Organic Batteries.
    Wang Y; Wang C; Ni Z; Gu Y; Wang B; Guo Z; Wang Z; Bin D; Ma J; Wang Y
    Adv Mater; 2020 Apr; 32(16):e2000338. PubMed ID: 32141139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Electrode Gravimetric Capacity of Li
    Xu J; Patil S; Koirala KP; Chen W; Campos-Mata A; Wang C; Roy S; Nanda J; Ajayan PM
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31711-31719. PubMed ID: 37339110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Engineering Design for High-Performance Aqueous Zinc-Organic Battery.
    Sun T; Zhang W; Nian Q; Tao Z
    Nanomicro Lett; 2023 Jan; 15(1):36. PubMed ID: 36637697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Conductivity-Relay between Organic Charge-Transfer and Radical Salts toward Conductive Additive-Free Rechargeable Battery.
    Fujihara Y; Kobayashi H; Takaishi S; Tomai T; Yamashita M; Honma I
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25748-25755. PubMed ID: 32412238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Alternative to Carbon Additives: The Fabrication of Conductive Layers Enabled by Soluble Conducting Polymer Precursors - A Case Study for Organic Batteries.
    Strietzel C; Oka K; Strømme M; Emanuelsson R; Sjödin M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5349-5356. PubMed ID: 33481558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Two Birds with One Stone": F Doping Ni-Co Hydroxide as High-Performance Cathode Material for Aqueous Zn Batteries.
    Liu W; Zhao Q; Wang Y; Chen Y; Chen L
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35631003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting Electrolytic MnO
    Zheng X; Wang Y; Xu Y; Ahmad T; Yuan Y; Sun J; Luo R; Wang M; Chuai M; Chen N; Jiang T; Liu S; Chen W
    Nano Lett; 2021 Oct; 21(20):8863-8871. PubMed ID: 34633819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new zinc-ion battery cathode with high-performance: Loofah-like lanthanum manganese perovskite.
    Zhu T; Zheng K; Wang P; Cai X; Wang X; Gao D; Yu D; Chen C; Liu Y
    J Colloid Interface Sci; 2022 Mar; 610():796-804. PubMed ID: 34862045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypeptide Radical Cathode for Aqueous Zn-Ion Battery with Two-Electron Storage and Faster Charging Rate.
    Deng Y; Teng C; Wu Y; Zhang K; Yan L
    ChemSusChem; 2022 Apr; 15(7):e202102710. PubMed ID: 35191200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically Self-Charging Aqueous Zinc-Organic Battery.
    Yan L; Zhang Y; Ni Z; Zhang Y; Xu J; Kong T; Huang J; Li W; Ma J; Wang Y
    J Am Chem Soc; 2021 Sep; 143(37):15369-15377. PubMed ID: 34491047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Conjugated Polycatechol Organic Cathode for Aqueous Zinc-Ion Storage.
    Zhang S; Zhao W; Li H; Xu Q
    ChemSusChem; 2020 Jan; 13(1):188-195. PubMed ID: 31696615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term Cycling Stability of Porphyrin Electrode for Li/Na Charge Storage at High Temperature.
    Zhang J; Ye C; He F; Zeng Y; Xiao J; Yang X; Shu H; Qi H; Liu W; Gao P
    ChemSusChem; 2023 Apr; 16(7):e202202159. PubMed ID: 36593581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Encapsulation of Small S
    Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Redox-Active Covalent Organic Framework with Highly Accessible Aniline-Fused Quinonoid Units Affords Efficient Proton Charge Storage.
    Yan X; Wang F; Su X; Ren J; Qi M; Bao P; Chen W; Peng C; Chen L
    Adv Mater; 2023 Nov; 35(44):e2305037. PubMed ID: 37728857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentrated Electrolyte for High-Performance Ca-Ion Battery Based on Organic Anode and Graphite Cathode.
    Li J; Han C; Ou X; Tang Y
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202116668. PubMed ID: 34994498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn
    Hou Z; Dong M; Xiong Y; Zhang X; Ao H; Liu M; Zhu Y; Qian Y
    Small; 2020 Jul; 16(26):e2001228. PubMed ID: 32510836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Air-Rechargeable Zn Battery Enabled by Organic-Inorganic Hybrid Cathode.
    Shi J; Mao K; Zhang Q; Liu Z; Long F; Wen L; Hou Y; Li X; Ma Y; Yue Y; Li L; Zhi C; Gao Y
    Nanomicro Lett; 2023 Feb; 15(1):53. PubMed ID: 36795246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.