These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 37968767)
1. A sialyltransferases-related gene signature serves as a potential predictor of prognosis and therapeutic response for bladder cancer. Cao P; Chen M; Zhang T; Zheng Q; Liu M Eur J Med Res; 2023 Nov; 28(1):515. PubMed ID: 37968767 [TBL] [Abstract][Full Text] [Related]
2. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis. Li J; Cao J; Li P; Yao Z; Deng R; Ying L; Tian J BMC Cancer; 2021 Jul; 21(1):858. PubMed ID: 34315402 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive Xu T; Xu W; Zheng Y; Li X; Cai H; Xu Z; Zou Q; Yu B Front Immunol; 2022; 13():931906. PubMed ID: 35958598 [TBL] [Abstract][Full Text] [Related]
4. Identification of a novel defined inflammation-related long noncoding RNA signature contributes to predicting prognosis and distinction between the cold and hot tumors in bladder cancer. Xiong X; Chen C; Li X; Yang J; Zhang W; Wang X; Zhang H; Peng M; Li L; Luo P Front Oncol; 2023; 13():972558. PubMed ID: 37064115 [TBL] [Abstract][Full Text] [Related]
5. Therapeutic Benefits and Prognostic Value of a Model Based on 7 Immune-associated Genes in Bladder Cancer. Cao M; Cao Y; Xue S; Zhang Q; Zhang H; Xue W Altern Ther Health Med; 2024 Apr; 30(4):130-138. PubMed ID: 38518167 [TBL] [Abstract][Full Text] [Related]
6. An effective N6-methyladenosine-related long non-coding RNA prognostic signature for predicting the prognosis of patients with bladder cancer. Ma T; Wang X; Meng L; Liu X; Wang J; Zhang W; Tian Z; Zhang Y BMC Cancer; 2021 Nov; 21(1):1256. PubMed ID: 34802433 [TBL] [Abstract][Full Text] [Related]
7. The construction and validation of an RNA binding protein-related prognostic model for bladder cancer. Chen F; Wang Q; Zhou Y BMC Cancer; 2021 Mar; 21(1):244. PubMed ID: 33685397 [TBL] [Abstract][Full Text] [Related]
8. Construction and validation of senescence risk score signature as a novel biomarker in liver hepatocellular carcinoma: a bioinformatic analysis. Lai T; Li F; Xiang L; Liu Z; Li Q; Cao M; Sun J; Hu Y; Liu T; Liang J Transl Cancer Res; 2024 Sep; 13(9):4786-4799. PubMed ID: 39430830 [TBL] [Abstract][Full Text] [Related]
9. Prognosis analysis and validation of lipid metabolism-associated lncRNAs and tumor immune microenvironment in bladder cancer. Tan Z; Fu S; Zuo J; Wang J; Wang H Aging (Albany NY); 2023 Aug; 15(16):8384-8407. PubMed ID: 37632832 [TBL] [Abstract][Full Text] [Related]
10. Identification and validation of telomerase related lncRNAs signature to predict prognosis and tumor immunotherapy response in bladder cancer. Chen X; Qin Z; Zhu X; Wang L; Li C; Wang H Sci Rep; 2023 Dec; 13(1):21816. PubMed ID: 38071230 [TBL] [Abstract][Full Text] [Related]
11. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer. Wang J; Qin D; Tao Z; Wang B; Xie Y; Wang Y; Li B; Cao J; Qiao X; Zhong S; Hu X Front Immunol; 2022; 13():1056932. PubMed ID: 36479114 [TBL] [Abstract][Full Text] [Related]
12. TFRC, associated with hypoxia and immune, is a prognostic factor and potential therapeutic target for bladder cancer. Tang R; Wang H; Liu J; Song L; Hou H; Liu M; Wang J; Wang J Eur J Med Res; 2024 Feb; 29(1):112. PubMed ID: 38336764 [TBL] [Abstract][Full Text] [Related]
13. Construction and validation of a bladder cancer risk model based on autophagy-related genes. Shen C; Yan Y; Yang S; Wang Z; Wu Z; Li Z; Zhang Z; Lin Y; Li P; Hu H Funct Integr Genomics; 2023 Jan; 23(1):46. PubMed ID: 36689018 [TBL] [Abstract][Full Text] [Related]
14. A nomogram model based on the number of examined lymph nodes-related signature to predict prognosis and guide clinical therapy in gastric cancer. Li H; Lin D; Yu Z; Li H; Zhao S; Hainisayimu T; Liu L; Wang K Front Immunol; 2022; 13():947802. PubMed ID: 36405735 [TBL] [Abstract][Full Text] [Related]
15. Derivation and Comprehensive Analysis of Aging Patterns in Patients with Bladder Cancer. Wang B; Tong F; Zhai C; Wang L; Liu Y; Wang J Dis Markers; 2021; 2021():3385058. PubMed ID: 34721733 [TBL] [Abstract][Full Text] [Related]
16. Identification of five long noncoding RNAs signature and risk score for prognosis of bladder urothelial carcinoma. Zhang C; Li Z; Hu J; Qi F; Li X; Luo J J Cell Biochem; 2020 Jan; 121(1):856-866. PubMed ID: 31373406 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of a novel lipid metabolism-related gene prognostic signature and candidate drugs for patients with bladder cancer. Zhu K; Xiaoqiang L; Deng W; Wang G; Fu B Lipids Health Dis; 2021 Oct; 20(1):146. PubMed ID: 34706720 [TBL] [Abstract][Full Text] [Related]
18. Identification and Validation of an Individualized Prognostic Signature of Bladder Cancer Based on Seven Immune Related Genes. Qiu H; Hu X; He C; Yu B; Li Y; Li J Front Genet; 2020; 11():12. PubMed ID: 32117435 [TBL] [Abstract][Full Text] [Related]
19. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer. Chi M; Liu J; Mei C; Shi Y; Liu N; Jiang X; Liu C; Xue N; Hong H; Xie J; Sun X; Yin B; Meng X; Wang B J Exp Clin Cancer Res; 2022 May; 41(1):175. PubMed ID: 35581606 [TBL] [Abstract][Full Text] [Related]
20. Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq. Zhang D; Lu W; Cui S; Mei H; Wu X; Zhuo Z J Ovarian Res; 2022 Nov; 15(1):123. PubMed ID: 36424614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]