These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37968798)
1. Clinically Oriented CBCT Periapical Lesion Evaluation via 3D CNN Algorithm. Fu WT; Zhu QK; Li N; Wang YQ; Deng SL; Chen HP; Shen J; Meng LY; Bian Z J Dent Res; 2024 Jan; 103(1):5-12. PubMed ID: 37968798 [TBL] [Abstract][Full Text] [Related]
2. Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study. Elgarba BM; Van Aelst S; Swaity A; Morgan N; Shujaat S; Jacobs R J Dent; 2023 Oct; 137():104639. PubMed ID: 37517787 [TBL] [Abstract][Full Text] [Related]
3. Automatic Detection of Periapical Osteolytic Lesions on Cone-beam Computed Tomography Using Deep Convolutional Neuronal Networks. Kirnbauer B; Hadzic A; Jakse N; Bischof H; Stern D J Endod; 2022 Nov; 48(11):1434-1440. PubMed ID: 35952897 [TBL] [Abstract][Full Text] [Related]
4. A deep learning algorithm proposal to automatic pharyngeal airway detection and segmentation on CBCT images. Sin Ç; Akkaya N; Aksoy S; Orhan K; Öz U Orthod Craniofac Res; 2021 Dec; 24 Suppl 2():117-123. PubMed ID: 33619828 [TBL] [Abstract][Full Text] [Related]
5. An artificial intelligence grading system of apical periodontitis in cone-beam computed tomography data. Zhao T; Wu H; Leng D; Yao E; Gu S; Yao M; Zhang Q; Wang T; Wu D; Xie L Dentomaxillofac Radiol; 2024 Oct; 53(7):447-458. PubMed ID: 38960866 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of cone-beam computed tomography and periapical radiography in apical periodontitis diagnosis. López FU; Kopper PM; Cucco C; Della Bona A; de Figueiredo JA; Vier-Pelisser FV J Endod; 2014 Dec; 40(12):2057-60. PubMed ID: 25306306 [TBL] [Abstract][Full Text] [Related]
7. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks. Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003 [TBL] [Abstract][Full Text] [Related]
8. Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning. Wang H; Minnema J; Batenburg KJ; Forouzanfar T; Hu FJ; Wu G J Dent Res; 2021 Aug; 100(9):943-949. PubMed ID: 33783247 [TBL] [Abstract][Full Text] [Related]
9. Accurate mandibular canal segmentation of dental CBCT using a two-stage 3D-UNet based segmentation framework. Lin X; Xin W; Huang J; Jing Y; Liu P; Han J; Ji J BMC Oral Health; 2023 Aug; 23(1):551. PubMed ID: 37563606 [TBL] [Abstract][Full Text] [Related]
10. Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT. Yeshua T; Ladyzhensky S; Abu-Nasser A; Abdalla-Aslan R; Boharon T; Itzhak-Pur A; Alexander A; Chaurasia A; Cohen A; Sosna J; Leichter I; Nadler C Eur Radiol; 2023 Nov; 33(11):7507-7518. PubMed ID: 37191921 [TBL] [Abstract][Full Text] [Related]
11. Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography:A validation study. Preda F; Morgan N; Van Gerven A; Nogueira-Reis F; Smolders A; Wang X; Nomidis S; Shaheen E; Willems H; Jacobs R J Dent; 2022 Sep; 124():104238. PubMed ID: 35872223 [TBL] [Abstract][Full Text] [Related]
12. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction. Zhang Z; Liu J; Yang D; Kamilov US; Hugo GD Med Phys; 2023 Feb; 50(2):808-820. PubMed ID: 36412165 [TBL] [Abstract][Full Text] [Related]
13. Diagnostic accuracy of periapical radiography and cone beam computed tomography in detecting apical periodontitis using histopathological findings as a reference standard. Kanagasingam S; Lim CX; Yong CP; Mannocci F; Patel S Int Endod J; 2017 May; 50(5):417-426. PubMed ID: 27063209 [TBL] [Abstract][Full Text] [Related]
14. Automatic segmentation of the pharyngeal airway space with convolutional neural network. Shujaat S; Jazil O; Willems H; Van Gerven A; Shaheen E; Politis C; Jacobs R J Dent; 2021 Aug; 111():103705. PubMed ID: 34077802 [TBL] [Abstract][Full Text] [Related]
15. Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - A validation study. Fontenele RC; Gerhardt MDN; Pinto JC; Van Gerven A; Willems H; Jacobs R; Freitas DQ J Dent; 2022 Apr; 119():104069. PubMed ID: 35183696 [TBL] [Abstract][Full Text] [Related]
16. Dental Caries Detection and Classification in CBCT Images Using Deep Learning. Esmaeilyfard R; Bonyadifard H; Paknahad M Int Dent J; 2024 Apr; 74(2):328-334. PubMed ID: 37940474 [TBL] [Abstract][Full Text] [Related]
17. Use and performance of artificial intelligence applications in the diagnosis of chronic apical periodontitis based on cone beam computed tomography imaging. Qian J; Ma R; Qu Y; Deng S; Duan Y; Zuo F; Wang Y; Wu Y Hua Xi Kou Qiang Yi Xue Za Zhi; 2022 Oct; 40(5):576-581. PubMed ID: 38596979 [TBL] [Abstract][Full Text] [Related]
18. Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN. Li Q; Chen K; Han L; Zhuang Y; Li J; Lin J J Xray Sci Technol; 2020; 28(5):905-922. PubMed ID: 32986647 [TBL] [Abstract][Full Text] [Related]
19. Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network. Minnema J; van Eijnatten M; Hendriksen AA; Liberton N; Pelt DM; Batenburg KJ; Forouzanfar T; Wolff J Med Phys; 2019 Nov; 46(11):5027-5035. PubMed ID: 31463937 [TBL] [Abstract][Full Text] [Related]
20. Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence: A systematic review and Meta-analysis. Xiang B; Lu J; Yu J J Dent; 2024 Jul; 146():105064. PubMed ID: 38768854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]