These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37968997)

  • 1. Soil surface roughness impacts the risk arising from a hypothetical urban radiological dispersive device activation.
    Bonfim CES; Silva VWL; Rodrigues LD; Curzio RC; Santos A; Profeta WHS; Xavier LRP; de Mello LA; Stenders RM; Andrade ER
    Radiat Prot Dosimetry; 2024 Feb; 200(2):206-213. PubMed ID: 37968997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urban critical infrastructure disruption after a radiological dispersive device event.
    Andrade ER; Reis ALQ; Alves DF; Alves IS; Andrade EVSL; Stenders RM; Federico CA; Silva AX
    J Environ Radioact; 2020 Oct; 222():106358. PubMed ID: 32745885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential urban threat after a radiological fire event.
    Silva RW; Stenders RM; Reis ALQ; Amorim JCC; Andrade ER
    Appl Radiat Isot; 2021 Oct; 176():109905. PubMed ID: 34418730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The convergence approach may be critical to improving early situational awareness in hostile radioactive environments.
    Silva VWL; Profeta WHS; Curzio RC; Santos A; Brum T; Andrade ER
    J Environ Radioact; 2024 Apr; 274():107413. PubMed ID: 38484579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lost life expectancy following a hypothetical urban radiological incident.
    Neves SCT; Horta LRP; Machado RV; Furuya DEG; Shimada PS; Arana ARA; Favareto APA; Andrade ER
    J Environ Radioact; 2024 Mar; 273():107391. PubMed ID: 38316100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protecting people against radiation exposure in the event of a radiological attack. A report of The International Commission on Radiological Protection.
    Valentin J;
    Ann ICRP; 2005; 35(1):1-110, iii-iv. PubMed ID: 16164984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose assessment for reentry or reoccupancy and recovery of urban areas contaminated by a radiological dispersal device: the need for a consensus approach.
    Sullivan T; Musolino SV; DeFranco J
    Health Phys; 2008 May; 94(5):411-7. PubMed ID: 18403962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric dispersion modeling for an accidental release from a SLOWPOKE-2 research reactor: a case study.
    Dennis HT; Grant CN; Preston JA
    Radiat Environ Biophys; 2022 May; 61(2):325-334. PubMed ID: 35411404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vertical radiation dose profile and decision-making in a simulated urban event.
    Alves IS; Castro MSC; Stenders RM; Silva RW; Brum T; Silva AX; Andrade ER
    J Environ Radioact; 2019 Nov; 208-209():106034. PubMed ID: 31454588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiological risk evaluation applied to aerial evacuation procedures in a nuclear scenario.
    Alves DF; Stenders RM; Federico CA; Andrade ER
    J Radiol Prot; 2022 Sep; 42(3):. PubMed ID: 36130586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consequence assessment of hypothetical urban radiological dispersal device incident in Korea.
    Oboo M; Nytak VB; Bulelwa N; Kim J
    J Environ Radioact; 2024 Feb; 272():107332. PubMed ID: 37984219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of A Radiological Release Using Aerosol Sampling.
    Hayes RB
    Health Phys; 2017 Apr; 112(4):326-337. PubMed ID: 28234691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergency response health physics.
    Mena R; Pemberton W; Beal W
    Health Phys; 2012 May; 102(5):542-8. PubMed ID: 22469932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-field investigation of the explosive dispersal of radioactive material based on a reconstructed spherical blast-wave flow.
    Hummel D; Ivan L
    J Environ Radioact; 2017 Jun; 172():30-42. PubMed ID: 28315824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of the EMRAS urban working group hypothetical scenario using the RESRAD-RDD methodology.
    Kamboj S; Cheng JJ; Yu C; Domotor S; Wallo A
    J Environ Radioact; 2009 Dec; 100(12):1012-8. PubMed ID: 19403213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependence of decontamination efficiency after a fallout of gamma-emitting radionuclides in suburban areas: a theoretical outlook on topsoil removal.
    Rääf CL; Isaksson M; Martinsson J; Finck R
    Sci Rep; 2022 Dec; 12(1):21656. PubMed ID: 36522402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiological consequence analysis for hypothetical accidental release from Nigerian Research Reactor-1.
    Simon J; Ibrahim YV; Adeyemo DJ; Garba NN; Asuku A; Bello S; Ibikunle IK
    Appl Radiat Isot; 2022 Aug; 186():110308. PubMed ID: 35675740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of particle deposition to and removal from clothing, skin, and hair after a radioactive airborne dispersal event.
    Brambilla S; Nelson MA; Brown MJ
    J Environ Radioact; 2023 Dec; 270():107296. PubMed ID: 37734236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of emergency response tools for accidental radiological contamination of French coastal areas.
    Duffa C; Bailly du Bois P; Caillaud M; Charmasson S; Couvez C; Didier D; Dumas F; Fievet B; Morillon M; Renaud P; Thébault H
    J Environ Radioact; 2016 Jan; 151 Pt 2():487-94. PubMed ID: 26032189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.