BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37969078)

  • 1. Conductive phthalocyanine-based porous organic polymer as sensing platform for rapid determination of vanillin.
    Xiang G; Xu W; Zhuge W; Huang Q; Zhang C; Peng J
    Analyst; 2023 Dec; 148(24):6274-6281. PubMed ID: 37969078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Tröger's base-linked aluminium phthalocyanine polymer for discriminative electrochemical sensing of the antibiotic isoniazid.
    Xiang G; Xu W; Zhuge W; Huang Q; Zhang C; Peng J
    Anal Methods; 2024 Feb; 16(7):1012-1020. PubMed ID: 38304962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palladium Supported on an Amphiphilic Triazine-Urea-Functionalized Porous Organic Polymer as a Highly Efficient Electrocatalyst for Electrochemical Sensing of Rutin in Human Plasma.
    Vilian ATE; Sivakumar R; Huh YS; Youk JH; Han YK
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19554-19563. PubMed ID: 29790734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel porous iron phthalocyanine based metal-organic framework electrochemical sensor for sensitive vanillin detection.
    Peng J; Wei L; Liu Y; Zhuge W; Huang Q; Huang W; Xiang G; Zhang C
    RSC Adv; 2020 Oct; 10(60):36828-36835. PubMed ID: 35517930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional conductive phthalocyanine-based metal-organic frameworks for electrochemical nitrite sensing.
    Lu S; Jia H; Hummel M; Wu Y; Wang K; Qi X; Gu Z
    RSC Adv; 2021 Jan; 11(8):4472-4477. PubMed ID: 35424394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin.
    Peng J; Huang Q; Zhuge W; Liu Y; Zhang C; Yang W; Xiang G
    Biosens Bioelectron; 2018 May; 106():212-218. PubMed ID: 29428591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of amine-functionalized magnetic porous organic polymers for effective extraction of phenolic endocrine disrupting chemicals.
    Zhang Y; Hao L; Li J; Liu W; Wang Z; Wu Q; Wang C
    J Chromatogr A; 2023 Sep; 1706():464271. PubMed ID: 37544235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemiluminescence enhanced by isolating ACQphores in pyrene-based porous organic polymer: A novel ECL emitter for the construction of biosensing platform.
    Zhang YJ; Yang Y; Wang JM; Liang WB; Yuan R; Xiao DR
    Anal Chim Acta; 2022 May; 1206():339648. PubMed ID: 35473864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples.
    Moradi O
    Food Chem Toxicol; 2022 Oct; 168():113391. PubMed ID: 36041662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorine-Functionalized Triazine-Based Porous Organic Polymers for the Efficient Adsorption of Aflatoxins.
    Li J; Yang Y; Zhou Z; Li S; Hao L; Liu W; Wang Z; Wu Q; Wang C
    J Agric Food Chem; 2023 Feb; 71(6):3068-3078. PubMed ID: 36734531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azophenyl Calix[4]arene Porous Organic Polymer for Extraction and Analysis of Triphenylmethane Dyes from Seafood.
    Kang JY; Zhao XB; Shi YP
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42981-42991. PubMed ID: 37642085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of bifunctional electrochemical biosensors for the sensitive detection of the SARS-CoV-2 N-gene based on porphyrin porous organic polymers.
    Cui J; Kan L; Cheng F; Liu J; He L; Xue Y; Fang S; Zhang Z
    Dalton Trans; 2022 Feb; 51(5):2094-2104. PubMed ID: 35040456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetric determination and electrochemical behavior of vanillin based on 1H-1,2,4-triazole-3-thiol polymer film modified gold electrode.
    Tabanlıgil Calam T
    Food Chem; 2020 Oct; 328():127098. PubMed ID: 32470775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of magnetic molecularly imprinted polymer based on deep eutectic solvent for specific recognition and quantification of vanillin in infant complementary food.
    Ji Y; Zhao J; Zhao L
    Food Chem; 2022 Apr; 374():131720. PubMed ID: 34896948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neodymium niobate nanospheres on functionalized carbon nanofibers: a nanoengineering approach for highly sensitive vanillin detection.
    Priscillal IJD; Wang SF
    Nanoscale; 2024 Jun; ():. PubMed ID: 38855854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive Two-Dimensional Phthalocyanine-based Metal-Organic Framework Nanosheets for Efficient Electroreduction of CO
    Yi JD; Si DH; Xie R; Yin Q; Zhang MD; Wu Q; Chai GL; Huang YB; Cao R
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):17108-17114. PubMed ID: 34033203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous NiCo
    Luo X; Huang M; He D; Wang M; Zhang Y; Jiang P
    Analyst; 2018 May; 143(11):2546-2554. PubMed ID: 29774341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges.
    Liu Q; Li H; Zhang Y; Chen W; Yu S; Chen Y
    Environ Res; 2023 Dec; 239(Pt 2):117406. PubMed ID: 37839529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient, reversible iodine capture and exceptional uptake of amines in viologen-based porous organic polymers.
    Li M; Zhao H; Lu ZY
    RSC Adv; 2020 May; 10(35):20460-20466. PubMed ID: 35517750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersed Nickel Phthalocyanine Molecules on Carbon Nanotubes as Cathode Catalysts for Li-CO
    Zheng H; Li H; Zhang Z; Wang X; Jiang Z; Tang Y; Zhang J; Emley B; Zhang Y; Zhou H; Yao Y; Liang Y
    Small; 2023 Oct; 19(43):e2302768. PubMed ID: 37381638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.