These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 37969139)
1. Concentration-Dependent Photocatalytic Upcycling of Poly(ethylene terephthalate) Plastic Waste. Kang H; Washington A; Capobianco MD; Yan X; Cruz VV; Weed M; Johnson J; Johns G; Brudvig GW; Pan X; Gu J ACS Mater Lett; 2023 Nov; 5(11):3032-3041. PubMed ID: 37969139 [TBL] [Abstract][Full Text] [Related]
2. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Diao J; Hu Y; Tian Y; Carr R; Moon TS Cell Rep; 2023 Jan; 42(1):111908. PubMed ID: 36640302 [TBL] [Abstract][Full Text] [Related]
3. Electro-Reforming Polyethylene Terephthalate Plastic to Co-Produce Valued Chemicals and Green Hydrogen. Wang J; Li X; Zhang T; Chen Y; Wang T; Zhao Y J Phys Chem Lett; 2022 Jan; 13(2):622-627. PubMed ID: 35019651 [TBL] [Abstract][Full Text] [Related]
4. Photovoltaic-driven electrocatalytic upcycling poly(ethylene terephthalate) plastic waste coupled with hydrogen generation. Zhang T; Li X; Wang J; Miao Y; Wang T; Qian X; Zhao Y J Hazard Mater; 2023 May; 450():131054. PubMed ID: 36841072 [TBL] [Abstract][Full Text] [Related]
5. Dual-Doped Nickel Sulfide for Electro-Upgrading Polyethylene Terephthalate into Valuable Chemicals and Hydrogen Fuel. Chen Z; Zheng R; Bao T; Ma T; Wei W; Shen Y; Ni BJ Nanomicro Lett; 2023 Sep; 15(1):210. PubMed ID: 37695408 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Amounts of an Antibacterial Monomer Enable the Upcycling of Poly(Ethylene Terephthalate) Waste. Zhang H; Fang T; Yao X; Li X; Zhu W Adv Mater; 2023 May; 35(20):e2210758. PubMed ID: 36809549 [TBL] [Abstract][Full Text] [Related]
7. Cu Promoted the Dynamic Evolution of Ni-Based Catalysts for Polyethylene Terephthalate Plastic Upcycling. Kang H; He D; Yan X; Dao B; Williams NB; Elliott GI; Streater D; Nyakuchena J; Huang J; Pan X; Xiao X; Gu J ACS Catal; 2024 Apr; 14(7):5314-5325. PubMed ID: 38601783 [TBL] [Abstract][Full Text] [Related]
8. Catalyst- and Solvent-Free Upcycling of Poly(Ethylene Terephthalate) Waste to Biodegradable Plastics. Fang T; Jiang W; Zheng T; Yao X; Zhu W Adv Mater; 2024 Nov; 36(46):e2403728. PubMed ID: 39097946 [TBL] [Abstract][Full Text] [Related]
9. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H Zhou H; Ren Y; Li Z; Xu M; Wang Y; Ge R; Kong X; Zheng L; Duan H Nat Commun; 2021 Aug; 12(1):4679. PubMed ID: 34404779 [TBL] [Abstract][Full Text] [Related]
10. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals. Mudondo J; Lee HS; Jeong Y; Kim TH; Kim S; Sung BH; Park SH; Park K; Cha HG; Yeon YJ; Kim HT J Microbiol Biotechnol; 2023 Jan; 33(1):1-14. PubMed ID: 36451300 [TBL] [Abstract][Full Text] [Related]
11. Biotransformation of ethylene glycol to glycolic acid by Yarrowia lipolytica: A route for poly(ethylene terephthalate) (PET) upcycling. Carniel A; Santos AG; Chinelatto LS; Castro AM; Coelho MAZ Biotechnol J; 2023 Jun; 18(6):e2200521. PubMed ID: 36896762 [TBL] [Abstract][Full Text] [Related]
12. Mining the Carbon Intermediates in Plastic Waste Upcycling for Constructing C-S Bond. Kang H; He D; Turchiano C; Yan X; Chai J; Weed M; Elliott GI; Onofrei D; Pan X; Xiao X; Gu J J Am Chem Soc; 2024 Jul; 146(27):18639-18649. PubMed ID: 38916586 [TBL] [Abstract][Full Text] [Related]
14. β-Ketoadipic acid production from poly(ethylene terephthalate) waste You SM; Lee SS; Ryu MH; Song HM; Kang MS; Jung YJ; Song EC; Sung BH; Park SJ; Joo JC; Kim HT; Cha HG RSC Adv; 2023 May; 13(21):14102-14109. PubMed ID: 37180017 [TBL] [Abstract][Full Text] [Related]
15. Microbial Fermentation of Polyethylene Terephthalate (PET) Plastic Waste for the Production of Chemicals or Electricity. Kalathil S; Miller M; Reisner E Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202211057. PubMed ID: 36103351 [TBL] [Abstract][Full Text] [Related]
16. Enhanced biodegradation of waste poly(ethylene terephthalate) using a reinforced plastic degrading enzyme complex. Hwang DH; Lee ME; Cho BH; Oh JW; You SK; Ko YJ; Hyeon JE; Han SO Sci Total Environ; 2022 Oct; 842():156890. PubMed ID: 35753492 [TBL] [Abstract][Full Text] [Related]
17. Closed-Loop Polymer-to-Polymer Upcycling of Waste Poly (Ethylene Terephthalate) into Biodegradable and Programmable Materials. Qin L; Li X; Ren G; Yuan R; Wang X; Hu Z; Ye C; Zou Y; Ding P; Zhang H; Cai Q ChemSusChem; 2024 Jul; 17(13):e202301781. PubMed ID: 38409634 [TBL] [Abstract][Full Text] [Related]
18. Exploring yeast biodiversity and process conditions for optimizing ethylene glycol conversion into glycolic acid. Senatore VG; Milanesi R; Masotti F; Maestroni L; Pagliari S; Cannavacciuolo C; Campone L; Serra I; Branduardi P FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 39104224 [TBL] [Abstract][Full Text] [Related]
19. Corrosion Engineering of Part-Per-Million Single Atom Pt Song M; Wu Y; Zhao Z; Zheng M; Wang C; Lu J Adv Mater; 2024 Jun; 36(23):e2403234. PubMed ID: 38504525 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical Production of Glycolate Fuelled By Polyethylene Terephthalate Plastics with Improved Techno-Economics. Du M; Zhang Y; Kang S; Xu C; Ma Y; Cai L; Zhu Y; Chai Y; Qiu B Small; 2023 Sep; 19(39):e2303693. PubMed ID: 37231558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]