These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 37969925)
1. Long-Range and High-Efficiency Plasmon-Assisted Förster Resonance Energy Transfer. Hamza AO; Al-Dulaimi A; Bouillard JG; Adawi AM J Phys Chem C Nanomater Interfaces; 2023 Nov; 127(44):21611-21616. PubMed ID: 37969925 [TBL] [Abstract][Full Text] [Related]
2. Förster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps. Hamza AO; Viscomi FN; Bouillard JG; Adawi AM J Phys Chem Lett; 2021 Feb; 12(5):1507-1513. PubMed ID: 33534597 [TBL] [Abstract][Full Text] [Related]
3. Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate quenching regime. Bohlen J; Cuartero-González Á; Pibiri E; Ruhlandt D; Fernández-Domínguez AI; Tinnefeld P; Acuna GP Nanoscale; 2019 Apr; 11(16):7674-7681. PubMed ID: 30946424 [TBL] [Abstract][Full Text] [Related]
4. Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency. de Torres J; Mivelle M; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Margeat E; Wenger J Nano Lett; 2016 Oct; 16(10):6222-6230. PubMed ID: 27623052 [TBL] [Abstract][Full Text] [Related]
5. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807 [TBL] [Abstract][Full Text] [Related]
6. Modification of förster resonance energy transfer efficiencyat interfaces. Enderlein J Int J Mol Sci; 2012 Nov; 13(11):15227-40. PubMed ID: 23203121 [TBL] [Abstract][Full Text] [Related]
7. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET). Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329 [TBL] [Abstract][Full Text] [Related]
8. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates. Ghenuche P; Mivelle M; de Torres J; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Wenger J Nano Lett; 2015 Sep; 15(9):6193-201. PubMed ID: 26237534 [TBL] [Abstract][Full Text] [Related]
9. Silver nanoparticle plasmonic enhanced förster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface. Zhao T; Li T; Liu Y Nanoscale; 2017 Jul; 9(28):9841-9847. PubMed ID: 28485436 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Förster Resonance Energy Transfer on Single Metal Particle. 2. Dependence on Donor-Acceptor Separation Distance, Particle Size, and Distance from Metal Surface. Zhang J; Fu Y; Chowdhury MH; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Aug; 111(32):11784-11792. PubMed ID: 19890406 [TBL] [Abstract][Full Text] [Related]
11. Metal-enhanced Förster resonance energy transfer (ME-FRET) in anthracene/tetracene-doped crystal systems. Karnam L; Brambilla L; Del Zoppo M; Bertarelli C Phys Chem Chem Phys; 2017 Nov; 19(45):30734-30739. PubMed ID: 29125153 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle. Zhang J; Fu Y; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Jan; 111(1):50-56. PubMed ID: 19079780 [TBL] [Abstract][Full Text] [Related]
13. Activators Confined Upconversion Nanoprobe with Near-Unity Förster Resonance Energy Transfer Efficiency for Ultrasensitive Detection. Chen T; Shang Y; Zhu Y; Hao S; Yang C ACS Appl Mater Interfaces; 2022 May; 14(17):19826-19835. PubMed ID: 35438973 [TBL] [Abstract][Full Text] [Related]
14. Probing the Förster Resonance Energy Transfer Dynamics in Colloidal Donor-Acceptor Quantum Dots Assemblies. Khalid MA; Mubeen M; Mukhtar M; Siddique Z; Sumreen P; Aydın F; Asil D; Iqbal A J Fluoresc; 2023 Nov; 33(6):2523-2529. PubMed ID: 37314535 [TBL] [Abstract][Full Text] [Related]
15. Selective turn-on and modulation of resonant energy transfer in single plasmonic hybrid nanostructures. Bujak Ł; Ishii T; Sharma DK; Hirata S; Vacha M Nanoscale; 2017 Jan; 9(4):1511-1519. PubMed ID: 28067372 [TBL] [Abstract][Full Text] [Related]
16. The influence of silver nanostructures formed in situ in silica sol-gel derived films on the rate of Förster resonance energy transfer. Holmes-Smith AS; McDowell GR; Toury M; McLoskey D; Hungerford G Chemphyschem; 2012 Feb; 13(2):535-41. PubMed ID: 22213636 [TBL] [Abstract][Full Text] [Related]
17. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons. Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992 [TBL] [Abstract][Full Text] [Related]
18. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states. Gonzaga-Galeana JA; Zurita-Sánchez JR J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365 [TBL] [Abstract][Full Text] [Related]
19. Giant enhancement of fluorescence resonance energy transfer based on nanoporous gold with small amount of residual silver. Cui L; Zhang L; Li Z; Jing Z; Huang L; Zeng H Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38241734 [TBL] [Abstract][Full Text] [Related]
20. Energy transfer from an individual silica nanoparticle to graphene quantum dots and resulting enhancement of photodetector responsivity. Kim S; Shin DH; Kim J; Jang CW; Kang SS; Kim JM; Kim JH; Lee DH; Kim JH; Choi SH; Hwang SW Sci Rep; 2016 Jun; 6():27145. PubMed ID: 27250343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]