BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37969925)

  • 21. Metal-enhanced fluorescence and FRET on nanohole arrays excited at angled incidence.
    Poirier-Richard HP; Couture M; Brule T; Masson JF
    Analyst; 2015 Jul; 140(14):4792-8. PubMed ID: 25670087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmon enhancement mechanism for the upconversion processes in NaYF4:Yb(3+),Er(3+) nanoparticles: Maxwell versus Förster.
    Lu D; Cho SK; Ahn S; Brun L; Summers CJ; Park W
    ACS Nano; 2014 Aug; 8(8):7780-92. PubMed ID: 25003209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Förster Resonance Energy Transfer Nanoplatform Based on Recognition-Induced Fusion/Fission of DNA Mixed Micelles for Nucleic Acid Sensing.
    Vafaei S; Allabush F; Tabaei SR; Male L; Dafforn TR; Tucker JHR; Mendes PM
    ACS Nano; 2021 May; 15(5):8517-8524. PubMed ID: 33961404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond.
    Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L
    Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device.
    Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV
    ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding Förster Resonance Energy Transfer in the Sheet Regime with DNA Brick-Based Dye Networks.
    Mathur D; Samanta A; Ancona MG; Díaz SA; Kim Y; Melinger JS; Goldman ER; Sadowski JP; Ong LL; Yin P; Medintz IL
    ACS Nano; 2021 Oct; 15(10):16452-16468. PubMed ID: 34609842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of gain medium on the plasmonic enhancement of Forster resonance energy transfer in the vicinity of a metallic particle or cavity.
    Chang R; Leung PT; Tsai DP
    Opt Express; 2014 Nov; 22(22):27451-61. PubMed ID: 25401893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons.
    Kochuveedu ST; Son T; Lee Y; Lee M; Kim D; Kim DH
    Sci Rep; 2014 Apr; 4():4735. PubMed ID: 24751860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Förster resonance energy transfer involving the triplet state.
    Sk B; Hirata S
    Chem Commun (Camb); 2023 May; 59(44):6643-6659. PubMed ID: 37139987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic enhancement of fluorescence on silver nanoparticle films.
    Xu S; Cao Y; Zhou J; Wang X; Wang X; Xu W
    Nanotechnology; 2011 Jul; 22(27):275715. PubMed ID: 21613682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods.
    Cao J; Zhang H; Pi X; Li D; Yang D
    Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoluminescence from FRET pairs coupled with Mie-resonant silicon nanospheres.
    Ozawa K; Adachi M; Sugimoto H; Fujii M
    Nanoscale; 2024 Feb; 16(8):4039-4046. PubMed ID: 38344928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS
    Taghipour N; Hernandez Martinez PL; Ozden A; Olutas M; Dede D; Gungor K; Erdem O; Perkgoz NK; Demir HV
    ACS Nano; 2018 Aug; 12(8):8547-8554. PubMed ID: 29965729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enabling Förster Resonance Energy Transfer from Large Nanocrystals through Energy Migration.
    Deng R; Wang J; Chen R; Huang W; Liu X
    J Am Chem Soc; 2016 Dec; 138(49):15972-15979. PubMed ID: 27960320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Förster resonance energy transfer.
    Zambrana-Puyalto X; Maccaferri N; Ponzellini P; Giovannini G; De Angelis F; Garoli D
    Nanoscale Adv; 2019 Jun; 1(6):2454-2461. PubMed ID: 36131984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.
    Aissaoui N; Moth-Poulsen K; Käll M; Johansson P; Wilhelmsson LM; Albinsson B
    Nanoscale; 2017 Jan; 9(2):673-683. PubMed ID: 27942672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Förster resonance energy transfer on layered metal-dielectric hyperbolic metamaterials: an excellent platform for low-threshold laser action.
    Shih CT; Chao YC; Shen JL; Chen YF
    Opt Express; 2023 Apr; 31(8):12669-12679. PubMed ID: 37157422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly.
    Field LD; Walper SA; Susumu K; Oh E; Medintz IL; Delehanty JB
    Sensors (Basel); 2015 Dec; 15(12):30457-68. PubMed ID: 26690153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer.
    de Torres J; Ferrand P; Colas des Francs G; Wenger J
    ACS Nano; 2016 Apr; 10(4):3968-76. PubMed ID: 27019008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.
    Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM
    J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.