These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37970031)

  • 1. Enhancing Diamond Color Center Fluorescence via Optimized Configurations of Plasmonic Core-Shell Nanoresonator Dimers.
    Szenes A; Vass DI; Bánhelyi B; Csete M
    ACS Omega; 2023 Nov; 8(44):41356-41362. PubMed ID: 37970031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved emission of SiV diamond color centers embedded into concave plasmonic core-shell nanoresonators.
    Szenes A; Bánhelyi B; Szabó LZ; Szabó G; Csendes T; Csete M
    Sci Rep; 2017 Oct; 7(1):13845. PubMed ID: 29062011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superradiant diamond color center arrays coupled to concave plasmonic nanoresonators.
    Vass D; Szenes A; Bánhelyi B; Csendes T; Szabó G; Csete M
    Opt Express; 2019 Oct; 27(22):31176-31192. PubMed ID: 31684358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonically Enhanced Superradiance of Broken-Symmetry Diamond Color Center Arrays Inside Core-Shell Nanoresonators.
    Vass D; Szenes A; Bánhelyi B; Csete M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Individual Nanoresonators Optimized for Lasing and Spasing Operation.
    Szenes A; Vass D; Bánhelyi B; Csete M
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ag-Diamond Core-Shell Nanostructures Incorporated with Silicon-Vacancy Centers.
    Li S; Francaviglia L; Kohler DD; Jones ZR; Zhao ET; Ogletree DF; Weber-Bargioni A; Melosh NA; Hamers RJ
    ACS Mater Au; 2022 Mar; 2(2):85-93. PubMed ID: 36855764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doubly Resonant Nanoantennas on Diamond for Spatial Addressing of Spin States.
    Jaffe T; Sorias O; Gal L; Kalish R; Orenstein M
    Nano Lett; 2017 Jul; 17(7):4217-4222. PubMed ID: 28657323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping Fluorescence Enhancement of Plasmonic Nanorod Coupled Dye Molecules.
    Tóth E; Ungor D; Novák T; Ferenc G; Bánhelyi B; Csapó E; Erdélyi M; Csete M
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32485951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Unidirectional Radiation Enhancement Based on a Hybrid Multilayer Dimer.
    Huang D; Liu S; Yang K
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards rational design and optimization of near-field enhancement and spectral tunability of hybrid core-shell plasmonic nanoprobes.
    Paria D; Zhang C; Barman I
    Sci Rep; 2019 Nov; 9(1):16071. PubMed ID: 31690763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a High-Bandwidth Uniform Radiation Antenna for Wide-Field Imaging with Ensemble NV Color Centers in Diamond.
    Li Z; Li Z; Shi Z; Zhang H; Liang Y; Tang J
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Dielectric Nanopillar Antenna-Resonators for Efficient Collected Photon Rate from Silicon Carbide Color Centers.
    Inam FA; Castelletto S
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures.
    Chahinez D; Reji T; Andreas R
    RSC Adv; 2018 May; 8(35):19616-19626. PubMed ID: 35540971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon Enhanced Fluorescence and Raman Scattering by [Au-Ag Alloy NP Cluster]@SiO
    Zhang C; Zhang T; Zhang Z; Zheng H
    Front Chem; 2019; 7():647. PubMed ID: 31616656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres.
    Salas-Montiel R; Berthel M; Beltran-Madrigal J; Huant S; Drezet A; Blaize S
    Nanotechnology; 2017 May; 28(20):205207. PubMed ID: 28323249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study on the Surface Plasmon Resonance Tunability of Spherical and Non-Spherical Core-Shell Dimer Nanostructures.
    Fernandes J; Kang S
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.
    Mokkapati S; Saxena D; Tan HH; Jagadish C
    Small; 2013 Dec; 9(23):3964-9. PubMed ID: 23757173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Mode Plasmonic Coupling-Enhanced Color Conversion of Inorganic CsPbBr
    Hui W; Ping T; Yin J; Li J; Li J; Kang J
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):32856-32864. PubMed ID: 34251164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas.
    Zapata M; Camacho Beltrán ÁS; Borisov AG; Aizpurua J
    Opt Express; 2015 Mar; 23(6):8134-49. PubMed ID: 25837151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Diamond Temperature Sensor Based on the Energy Level Shift of Nitrogen-Vacancy Color Centers.
    Yang M; Yuan Q; Gao J; Shu S; Chen F; Sun H; Nishimura K; Wang S; Yi J; Lin CT; Jiang N
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31703273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.