These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37970051)

  • 1. Surface Plasmon Field-Enhanced Raman Scattering Co-Excited by P-Polarized and S-Polarized Light Based on Waveguide-Coupled Surface Plasmon Resonance Configuration.
    Liu Y; Liang J; Xu S; Geng Y
    ACS Omega; 2023 Nov; 8(44):41953-41959. PubMed ID: 37970051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evanescent field excited plasmonic nano-antenna for improving SERS signal.
    Gu Y; Li H; Xu S; Liu Y; Xu W
    Phys Chem Chem Phys; 2013 Oct; 15(37):15494-8. PubMed ID: 23942757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Range Surface Plasmon Resonance Configuration for Enhancing SERS with an Adjustable Refractive Index Sample Buffer to Maintain the Symmetry Condition.
    Liu Y; Zhang H; Geng Y; Xu S; Xu W; Yu J; Deng W; Yu B; Wang L
    ACS Omega; 2020 Dec; 5(51):32951-32958. PubMed ID: 33403256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waveguide-coupled directional Raman radiation for surface analysis.
    Chen C; Li JY; Wang L; Lu DF; Qi ZM
    Phys Chem Chem Phys; 2015 Sep; 17(33):21278-87. PubMed ID: 25662793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental analysis of waveguide-coupled surface-plasmon-polariton cone properties.
    Nyamekye CKA; Zhu Q; Mahmood R; Weibel SC; Hillier AC; Smith EA
    Anal Chim Acta; 2019 Feb; 1048():123-131. PubMed ID: 30598142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.
    Huo SX; Liu Q; Cao SH; Cai WP; Meng LY; Xie KX; Zhai YY; Zong C; Yang ZL; Ren B; Li YQ
    J Phys Chem Lett; 2015 Jun; 6(11):2015-9. PubMed ID: 26266494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Note: Simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering.
    Liu Y; Xu S; Tang B; Wang Y; Zhou J; Zheng X; Zhao B; Xu W
    Rev Sci Instrum; 2010 Mar; 81(3):036105. PubMed ID: 20370228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles.
    Kong L; Lee C; Earhart CM; Cordovez B; Chan JW
    Opt Express; 2015 Mar; 23(5):6793-802. PubMed ID: 25836898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon waveguide resonance Raman spectroscopy.
    McKee KJ; Meyer MW; Smith EA
    Anal Chem; 2012 Nov; 84(21):9049-55. PubMed ID: 23046486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L; Lee TH; Elliott SR
    Opt Lett; 2009 Sep; 34(17):2685-7. PubMed ID: 19724532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide.
    Ong BH; Yuan X; Tan YY; Irawan R; Fang X; Zhang L; Tjin SC
    Lab Chip; 2007 Apr; 7(4):506-12. PubMed ID: 17389968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the Hemispherical Shielding Effect of SiO
    Wang F; Du D; Liu S; Wang L; Jiao T; Xu Z; Wang H
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical arrangement for surface plasmon-assisted directional enhanced Raman scattering spectroscopy.
    Beketov GV; Shynkarenko OV; Yukhymchuk VO
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():488-495. PubMed ID: 31077952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite substrate of graphene/Ag nanoparticles coupled with a multilayer film for surface-enhanced Raman scattering biosensing.
    Yue W; Liu C; Zha Z; Liu R; Gao J; Shafi M; Feng J; Jiang S
    Opt Express; 2022 Apr; 30(8):13226-13237. PubMed ID: 35472940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration.
    Borah R; Ninakanti R; Bals S; Verbruggen SW
    Sci Rep; 2022 Sep; 12(1):15738. PubMed ID: 36130995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film.
    Li K; Jiang K; Zhang L; Wang Y; Mao L; Zeng J; Lu Y; Wang P
    Nanotechnology; 2016 Apr; 27(16):165401. PubMed ID: 26939539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array.
    Song C; Jiang X; Yang Y; Zhang J; Larson S; Zhao Y; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31242-31254. PubMed ID: 32608960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [NIR-SERS Spectra Detection of Cytidine on Nano-Silver Films].
    Zhang DQ; Liu RM; Zhang GQ; Zhang Y; Xiong Y; Zhang CY; Li L; Si MZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):743-8. PubMed ID: 27400517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multipole Radiations from Large Gold Nanospheres Excited by Evanescent Wave.
    Chen J; Xiang J; Jiang S; Dai Q; Tie S; Lan S
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30708976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive detection of 1,4-Bis(4-vinylpyridyl)phenylene in a small volume of low refractive index liquid by surface-enhanced Raman scattering-active light waveguide.
    Xu W; Xu S; Lü Z; Chen L; Zhao B; Ozaki Y
    Appl Spectrosc; 2004 Apr; 58(4):414-9. PubMed ID: 15108713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.