These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37970098)

  • 1. Mechanical properties and constitutive models of shape memory alloy for structural engineering: A review.
    Mohammadgholipour A; Billah AM
    J Intell Mater Syst Struct; 2023 Dec; 34(20):2335-2359. PubMed ID: 37970098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Mechanical Properties of Large Shape Memory Alloy Bars under Different Heat Treatments.
    Kang L; Qian H; Guo Y; Ye C; Li Z
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32846946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RC Structures Strengthened by an Iron-Based Shape Memory Alloy Embedded in a Shotcrete Layer-Nonlinear Finite Element Modeling.
    Dolatabadi N; Shahverdi M; Ghassemieh M; Motavalli M
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33287116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Temperature-Dependent Model of Shape Memory Alloys Considering Tensile-Compressive Asymmetry and the Ratcheting Effect.
    Wang L; Feng P; Wu Y; Liu Z
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32668645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multiscale Analysis on the Superelasticity Behavior of Architected Shape Memory Alloy Materials.
    Xu R; Bouby C; Zahrouni H; Ben Zineb T; Hu H; Potier-Ferry M
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30227627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses.
    Hu JW
    Materials (Basel); 2014 Feb; 7(2):1122-1141. PubMed ID: 28788504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of Neural Network Modeling of Shape Memory Alloys.
    Hmede R; Chapelle F; Lapusta Y
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seismic Behavior of Superelastic Shape Memory Alloy Spring in Base Isolation System of Multi-Story Steel Frame.
    Liu Y; Wang H; Qiu C; Zhao X
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-Directed Energy Deposition of Fe-Mn-Si-Based Shape Memory Alloy: Microstructure, Mechanical Properties, and Shape Memory Properties.
    Liu B; Yao C; Kang J; Li R; Niu P
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A constitutive model of porous SMAs considering tensile-compressive asymmetry behaviors.
    Liu B; Dui G; Xie B; Xue L
    J Mech Behav Biomed Mater; 2014 Apr; 32():185-191. PubMed ID: 24480405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.
    Ashrafi MJ; Arghavani J; Naghdabadi R; Sohrabpour S
    J Mech Behav Biomed Mater; 2015 Feb; 42():292-310. PubMed ID: 25528691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superelastic Nickel-Titanium (NiTi)-Based Smart Alloys for Enhancing the Performance of Concrete Structures.
    Alshannag MJ; Alqarni AS; Higazey MM
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advancements in Development and Application of an Iron-based Shape Memory Alloy at Empa.
    Shahverdi M; Raza S; Ghafoori E; Czaderski C; Michels J; Motavalli M
    Chimia (Aarau); 2022 Mar; 76(3):242-248. PubMed ID: 38069739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermomechanical Fatigue Testing on Fe-Mn-Si Shape Memory Alloys in Prestress Conditions.
    Marinopoulou E; Katakalos K
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of One-Dimensional Ivshin-Pence Shape Memory Alloy Constitutive Model for Sensitivity and Uncertainty.
    Islam ABMR; Karadoğan E
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32214042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Constitutive Description for Shape Memory Alloys with the Growth of Martensite Band.
    Li W; Shen X; Peng X
    Materials (Basel); 2014 Jan; 7(1):576-590. PubMed ID: 28788476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape Memory Alloy-Polymer Composites: Static and Fatigue Pullout Strength under Thermo-Mechanical Loading.
    Rodinò S; Curcio EM; Renzo DA; Sgambitterra E; Magarò P; Furgiuele F; Brandizzi M; Maletta C
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoted mechanical properties and functionalities via Ta-tailored Ti-Au-Cr shape memory alloys towards biomedical applications.
    Chiu WT; Fuchiwaki K; Umise A; Tahara M; Inamura T; Hosoda H
    J Mech Behav Biomed Mater; 2022 Sep; 133():105358. PubMed ID: 35834894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Mechanical Behavior and Energy Dissipation in Fiber-Reinforced Polymers through Shape Memory Alloy Integration: A Numerical Study on SMA-FRP Composites under Cyclic Tensile Loading.
    Eilbeigi S; Tavakkolizadeh M; Masoodi AR
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity and Uncertainty Analysis of One-Dimensional Tanaka and Liang-Rogers Shape Memory Alloy Constitutive Models.
    Islam ABMR; Karadoğan E
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.