These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37971074)

  • 21. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration.
    Oberdiek F; Vargas CI; Rider P; Batinic M; Görke O; Radenković M; Najman S; Baena JM; Jung O; Barbeck M
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.
    Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR
    Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Process-Structure-Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds.
    Gerdes S; Mostafavi A; Ramesh S; Memic A; Rivero IV; Rao P; Tamayol A
    Tissue Eng Part A; 2020 Mar; 26(5-6):279-291. PubMed ID: 31964254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications.
    Tommasino C; Auriemma G; Sardo C; Alvarez-Lorenzo C; Garofalo E; Morello S; Falcone G; Aquino RP
    Int J Pharm; 2023 Jun; 641():123093. PubMed ID: 37268029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pore Size of 3D-Printed Polycaprolactone/Polyethylene Glycol/Hydroxyapatite Scaffolds Affects Bone Regeneration by Modulating Macrophage Polarization and the Foreign Body Response.
    Li W; Dai F; Zhang S; Xu F; Xu Z; Liao S; Zeng L; Song L; Ai F
    ACS Appl Mater Interfaces; 2022 May; 14(18):20693-20707. PubMed ID: 35500207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering.
    Cengiz IF; Maia FR; da Silva Morais A; Silva-Correia J; Pereira H; Canadas RF; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM
    Biofabrication; 2020 Mar; 12(2):025028. PubMed ID: 32069441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization.
    Velioglu ZB; Pulat D; Demirbakan B; Ozcan B; Bayrak E; Erisken C
    Connect Tissue Res; 2019 May; 60(3):274-282. PubMed ID: 30058375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications.
    Barbosa TV; Dernowsek JA; Tobar RJR; Casali BC; Fortulan CA; Ferreira EB; Selistre-de-Araújo HS; Branciforti MC
    Biomed Mater; 2022 Aug; 17(5):. PubMed ID: 35948004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability.
    Ye X; He Z; Liu Y; Liu X; He R; Deng G; Peng Z; Liu J; Luo Z; He X; Wang X; Wu J; Huang X; Zhang J; Wang C
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Combination of a Polycaprolactone Fumarate Scaffold with Polyethylene Terephthalate Sutures for Intra-Articular Ligament Regeneration.
    Parry JA; Wagner ER; Kok PL; Dadsetan M; Yaszemski MJ; van Wijnen AJ; Kakar S
    Tissue Eng Part A; 2018 Feb; 24(3-4):245-253. PubMed ID: 28530131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(ε-caprolactone-
    Fuoco T; Ahlinder A; Jain S; Mustafa K; Finne-Wistrand A
    Biomacromolecules; 2020 Jan; 21(1):188-198. PubMed ID: 31549825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy.
    Bojedla SSR; Yeleswarapu S; Alwala AM; Nikzad M; Masood SH; Riza S; Pati F
    ACS Appl Bio Mater; 2022 Sep; 5(9):4465-4479. PubMed ID: 35994743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.
    Rindone AN; Nyberg E; Grayson WL
    Methods Mol Biol; 2018; 1577():209-226. PubMed ID: 28493213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro.
    Fairag R; Rosenzweig DH; Ramirez-Garcialuna JL; Weber MH; Haglund L
    ACS Appl Mater Interfaces; 2019 May; 11(17):15306-15315. PubMed ID: 30973708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration.
    Nadi A; Khodaei M; Javdani M; Mirzaei SA; Soleimannejad M; Tayebi L; Asadpour S
    Int J Biol Macromol; 2022 Oct; 219():1319-1336. PubMed ID: 36055598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wet 3D printing of biodegradable porous scaffolds to enable room-temperature deposition modeling of polymeric solutions for regeneration of articular cartilage.
    Yu X; Wang P; Gao J; Fu Y; Wang Q; Chen J; Chen S; Ding J
    Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38569492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.