These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37971432)

  • 1. Acoustics of Breath Noises in Human Speech: Descriptive and Three-Dimensional Modeling Approaches.
    Werner R; Fuchs S; Trouvain J; Kürbis S; Möbius B; Birkholz P
    J Speech Lang Hear Res; 2023 Nov; ():1-15. PubMed ID: 37971432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relevance of the Implementation of Teeth in Three-Dimensional Vocal Tract Models.
    Traser L; Birkholz P; Flügge TV; Kamberger R; Burdumy M; Richter B; Korvink JG; Echternach M
    J Speech Lang Hear Res; 2017 Sep; 60(9):2379-2393. PubMed ID: 28898358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vocal Tract Morphology in Inhaling Singing: An MRI-Based Study.
    Moerman M; Vanhecke F; Van Assche L; Vercruysse J; Daemers K; Leman M
    J Voice; 2016 Jul; 30(4):466-71. PubMed ID: 26122925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Parkinson Disease Tremor Phenotype on Cepstral Peak Prominence and Transglottal Airflow in Vowels and Speech.
    Burk BR; Watts CR
    J Voice; 2019 Jul; 33(4):580.e11-580.e19. PubMed ID: 29472149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic and acoustic features of vocal effort.
    Rosenthal AL; Lowell SY; Colton RH
    J Voice; 2014 Mar; 28(2):144-53. PubMed ID: 24412040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic comparison of vowel sounds among adult females.
    Franca MC
    J Voice; 2012 Sep; 26(5):671.e9-17. PubMed ID: 22285451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic comparison of vowel articulation in normal and reverse phonation.
    Robb MP; Chen Y; Gilbert HR; Lerman JW
    J Speech Lang Hear Res; 2001 Feb; 44(1):118-27. PubMed ID: 11218096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ingressive speech errors: a service evaluation of speech-sound therapy in a child aged 4;6.
    Hrastelj L; Knight RA
    Int J Lang Commun Disord; 2017 Jul; 52(4):479-488. PubMed ID: 27891743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vowel and Sibilant Production in Noise: Effects of Noise Frequency and Phonological Similarity.
    Reilly KJ
    J Speech Lang Hear Res; 2020 Apr; 63(4):1002-1017. PubMed ID: 32293944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective speech outcomes after surgical treatment for oral cancer: An acoustic analysis of a spontaneous speech corpus containing 32.850 tokens.
    Tienkamp TB; van Son RJJH; Halpern BM
    J Commun Disord; 2023; 101():106292. PubMed ID: 36521253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Audio-vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises.
    Lee SH; Hsiao TY; Lee GS
    Hear Res; 2015 Jun; 324():1-6. PubMed ID: 25749240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Vocal Effort from the Aerodynamics of Labial Fricatives: A Feasibility Study.
    Meynadier Y; El Hajj A; Pitermann M; Legou T; Giovanni A
    J Voice; 2018 Nov; 32(6):771.e15-771.e24. PubMed ID: 28916222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dynamic Effect of the Valleculae on Singing Voice - An Exploratory Study Using 3D Printed Vocal Tracts.
    Feng M; Howard DM
    J Voice; 2023 Mar; 37(2):178-186. PubMed ID: 33397591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic characteristics of fricatives, amplitude of formants and clarity of speech produced without and with a medical mask.
    Nguyen DD; Chacon A; Payten C; Black R; Sheth M; McCabe P; Novakovic D; Madill C
    Int J Lang Commun Disord; 2022 Mar; 57(2):366-380. PubMed ID: 35166414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subglottal pressure oscillations accompanying phonation.
    Sundberg J; Scherer R; Hess M; Müller F; Granqvist S
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of acoustic-to-articulatory inversion of speech by analysis-by-synthesis using chain matrices and the Maeda articulatory model.
    Panchapagesan S; Alwan A
    J Acoust Soc Am; 2011 Apr; 129(4):2144-62. PubMed ID: 21476670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lombard Effect in Individuals With Nonphonotraumatic Vocal Hyperfunction: Impact on Acoustic, Aerodynamic, and Vocal Fold Vibratory Parameters.
    Castro C; Prado P; Espinoza VM; Testart A; Marfull D; Manriquez R; Stepp CE; Mehta DD; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2022 Aug; 65(8):2881-2895. PubMed ID: 35930680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study.
    Clément P; Hans S; Hartl DM; Maeda S; Vaissière J; Brasnu D
    J Voice; 2007 Sep; 21(5):522-30. PubMed ID: 16581228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vowel height and vocal intensity on anticipatory nasal airflow in individuals with normal speech.
    Young LH; Zajac DJ; Mayo R; Hooper CR
    J Speech Lang Hear Res; 2001 Feb; 44(1):52-60. PubMed ID: 11218109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception and Acoustic Studies of Vowel Intelligibility in Dysphonic Speech.
    Ishikawa K; Nudelman C; Park S; Ketring C
    J Voice; 2021 Jul; 35(4):659.e11-659.e24. PubMed ID: 31952898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.