These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37971672)

  • 1. Small villages and their sanitary infrastructure-an unnoticed influence on water quantity and a threat to water quality in headwater catchments.
    Spill C; Ditzel L; Gassmann M
    Environ Monit Assess; 2023 Nov; 195(12):1482. PubMed ID: 37971672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic micropollutants discharged by combined sewer overflows - Characterisation of pollutant sources and stormwater-related processes.
    Launay MA; Dittmer U; Steinmetz H
    Water Res; 2016 Nov; 104():82-92. PubMed ID: 27518145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants.
    Phillips PJ; Chalmers AT; Gray JL; Kolpin DW; Foreman WT; Wall GR
    Environ Sci Technol; 2012 May; 46(10):5336-43. PubMed ID: 22540536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating between point and non-point source nutrient loadings of wastewater in an agriculturally impacted area using a hybrid statistical model.
    Jatko JT; McManamay RA; Woodyard MT; Roush LK; Back JA; King RS; Matson CW
    Sci Total Environ; 2024 Feb; 912():169553. PubMed ID: 38142993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined sewer overflows to surface waters detected by the anthropogenic marker caffeine.
    Buerge IJ; Poiger T; Müller MD; Buser HR
    Environ Sci Technol; 2006 Jul; 40(13):4096-102. PubMed ID: 16856722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of software sensors for determining total phosphorus and total nitrogen in waters.
    Lee E; Han S; Kim H
    Int J Environ Res Public Health; 2013 Jan; 10(1):219-36. PubMed ID: 23307350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of online water quality monitoring for assessing the effects of WWTP overflows in rivers.
    Boënne W; Desmet N; Van Looy S; Seuntjens P
    Environ Sci Process Impacts; 2014 May; 16(6):1510-8. PubMed ID: 24770377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of combined sewer overflows to trace contaminant loads in urban streams.
    Weyrauch P; Matzinger A; Pawlowsky-Reusing E; Plume S; von Seggern D; Heinzmann B; Schroeder K; Rouault P
    Water Res; 2010 Aug; 44(15):4451-62. PubMed ID: 20599243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient attenuation dynamics in effluent dominated watercourses.
    Acuña V; Casellas M; Font C; Romero F; Sabater S
    Water Res; 2019 Sep; 160():330-338. PubMed ID: 31158615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP; Neal C; Withers PJ
    Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of combined sewer overflow impacts on short-term pharmaceutical and illicit drug occurrence in a heavily urbanised tidal river catchment (London, UK).
    Munro K; Martins CPB; Loewenthal M; Comber S; Cowan DA; Pereira L; Barron LP
    Sci Total Environ; 2019 Mar; 657():1099-1111. PubMed ID: 30677877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer overflows and receiving waters.
    Kay P; Hughes SR; Ault JR; Ashcroft AE; Brown LE
    Environ Pollut; 2017 Jan; 220(Pt B):1447-1455. PubMed ID: 27829513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the impact of combined sewer overflows on surface water quality in a sparsely monitored area.
    Bertels D; De Meester J; Dirckx G; Willems P
    Water Res; 2023 Oct; 244():120498. PubMed ID: 37639989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of chemical and microbiological parameters on the Leite River Lithuania.
    Česonienė L; Sileikiene D; Dapkiene M; Radzevicius A; Räsänen K
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18752-18765. PubMed ID: 31055754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point- and nonpoint-source pesticide contamination in the Zwester Ohm catchment, Germany.
    Müller K; Bach M; Hartmann H; Spiteller M; Frede HG
    J Environ Qual; 2002; 31(1):309-18. PubMed ID: 11837435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved and particulate nutrient export from rural catchments: a case study from Luxembourg.
    Salvia-Castellví M; Iffly JF; Borght PV; Hoffmann L
    Sci Total Environ; 2005 May; 344(1-3):51-65. PubMed ID: 15907510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point-source effects on N and P uptake in a forested and an agricultural Mediterranean streams.
    Merseburger G; Martí E; Sabater F; Ortiz JD
    Sci Total Environ; 2011 Feb; 409(5):957-67. PubMed ID: 21185586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cumulative effects of fecal contamination from combined sewer overflows: Management for source water protection.
    Jalliffier-Verne I; Heniche M; Madoux-Humery AS; Galarneau M; Servais P; Prévost M; Dorner S
    J Environ Manage; 2016 Jun; 174():62-70. PubMed ID: 27011341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting blue-green infrastructure elements to reduce combined sewer overflows.
    Cavadini GB; Rodriguez M; Cook LM
    J Environ Manage; 2024 Aug; 365():121465. PubMed ID: 38901320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different model approaches for a hygiene early warning system at the lower Ruhr River, Germany.
    Mälzer HJ; Aus der Beek T; Müller S; Gebhardt J
    Int J Hyg Environ Health; 2016 Oct; 219(7 Pt B):671-680. PubMed ID: 26163780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.