BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 37971931)

  • 41. Cold Stress Response: An Overview in
    Ermilova E
    Front Plant Sci; 2020; 11():569437. PubMed ID: 33013991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Type-II Metacaspases Mediate the Processing of Plant Elicitor Peptides in Arabidopsis.
    Shen W; Liu J; Li JF
    Mol Plant; 2019 Nov; 12(11):1524-1533. PubMed ID: 31454707
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two aspartate residues at the putative p10 subunit of a type II metacaspase from Nicotiana tabacum L. may contribute to the substrate-binding pocket.
    Acosta-Maspons A; Sepúlveda-García E; Sánchez-Baldoquín L; Marrero-Gutiérrez J; Pons T; Rocha-Sosa M; González L
    Planta; 2014 Jan; 239(1):147-60. PubMed ID: 24121807
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Draparnaldia: a chlorophyte model for comparative analyses of plant terrestrialization.
    Caisová L
    J Exp Bot; 2020 Jun; 71(11):3305-3313. PubMed ID: 32100007
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural basis for Ca
    Zhu P; Yu XH; Wang C; Zhang Q; Liu W; McSweeney S; Shanklin J; Lam E; Liu Q
    Nat Commun; 2020 May; 11(1):2249. PubMed ID: 32382010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochemical evidence of key residues for the activation and autoprocessing of tomato type II metacaspase.
    Wen S; Ma QM; Zhang YL; Yang JP; Zhao GH; Fu DQ; Luo YB; Qu GQ
    FEBS Lett; 2013 Aug; 587(16):2517-22. PubMed ID: 23850889
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis.
    Zhang Q; Song P; Qu Y; Wang P; Jia Q; Guo L; Zhang C; Mao T; Yuan M; Wang X; Zhang W
    Plant Cell Environ; 2017 Oct; 40(10):2220-2235. PubMed ID: 28710795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomics Analysis Reveals That Caspase-Like and Metacaspase-Like Activities Are Dispensable for Activation of Proteases Involved in Early Response to Biotic Stress in
    Balakireva AV; Deviatkin AA; Zgoda VG; Kartashov MI; Zhemchuzhina NS; Dzhavakhiya VG; Golovin AV; Zamyatnin AA
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chloroplast sulfate transport in green algae--genes, proteins and effects.
    Melis A; Chen HC
    Photosynth Res; 2005 Dec; 86(3):299-307. PubMed ID: 16307303
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Programmed cell death in protists.
    Deponte M
    Biochim Biophys Acta; 2008 Jul; 1783(7):1396-405. PubMed ID: 18291111
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide characterization, molecular evolution and expression profiling of the metacaspases in potato (
    Dubey N; Trivedi M; Varsani S; Vyas V; Farsodia M; Singh SK
    Heliyon; 2019 Feb; 5(2):e01162. PubMed ID: 30793051
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan.
    González-Pleiter M; Rioboo C; Reguera M; Abreu I; Leganés F; Cid Á; Fernández-Piñas F
    Aquat Toxicol; 2017 May; 186():50-66. PubMed ID: 28249228
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii.
    Murik O; Elboher A; Kaplan A
    New Phytol; 2014 Apr; 202(2):471-484. PubMed ID: 24345283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Arabidopsis metacaspase9 degradome.
    Tsiatsiani L; Timmerman E; De Bock PJ; Vercammen D; Stael S; van de Cotte B; Staes A; Goethals M; Beunens T; Van Damme P; Gevaert K; Van Breusegem F
    Plant Cell; 2013 Aug; 25(8):2831-47. PubMed ID: 23964026
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metacaspase involvement in programmed cell death of the marine cyanobacterium Trichodesmium.
    Spungin D; Bidle KD; Berman-Frank I
    Environ Microbiol; 2019 Feb; 21(2):667-681. PubMed ID: 30585394
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components.
    Atkinson N; Feike D; Mackinder LC; Meyer MT; Griffiths H; Jonikas MC; Smith AM; McCormick AJ
    Plant Biotechnol J; 2016 May; 14(5):1302-15. PubMed ID: 26538195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of Damage-Activated Metacaspase Activity by Western Blot in Plants.
    Stael S; Miller LP; Fernández-Fernández ÁD; Van Breusegem F
    Methods Mol Biol; 2022; 2447():127-137. PubMed ID: 35583778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and characterization of ChlreSEX4, a novel glucan phosphatase from Chlamydomonas reinhardtii green alga.
    Carrillo JB; Torresi F; Morales LL; Ricordi M; Gomez-Casati DF; Busi MV; Martín M
    Arch Biochem Biophys; 2020 Feb; 680():108235. PubMed ID: 31877265
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas.
    Wang F; Dischinger K; Westrich LD; Meindl I; Egidi F; Trösch R; Sommer F; Johnson X; Schroda M; Nickelsen J; Willmund F; Vallon O; Bohne AV
    Plant Physiol; 2023 Mar; 191(3):1612-1633. PubMed ID: 36649171
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death.
    Meslin B; Beavogui AH; Fasel N; Picot S
    PLoS One; 2011; 6(8):e23867. PubMed ID: 21858231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.