BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37971988)

  • 1. Spatial Distributions of Single-Molecule Reactivity in Plasmonic Catalysis.
    Ezendam S; Gargiulo J; Sousa-Castillo A; Lee JB; Nam YS; Maier SA; Cortés E
    ACS Nano; 2024 Jan; 18(1):451-460. PubMed ID: 37971988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts.
    Quiroz J; Barbosa ECM; Araujo TP; Fiorio JL; Wang YC; Zou YC; Mou T; Alves TV; de Oliveira DC; Wang B; Haigh SJ; Rossi LM; Camargo PHC
    Nano Lett; 2018 Nov; 18(11):7289-7297. PubMed ID: 30352162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-Resolution Mapping of a Chemical Reaction Driven by Plasmonic Near-Fields.
    Hamans RF; Parente M; Baldi A
    Nano Lett; 2021 Mar; 21(5):2149-2155. PubMed ID: 33606941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring plasmonic hot-carrier chemical reactions at the single particle level.
    Simoncelli S; Pensa EL; Brick T; Gargiulo J; Lauri A; Cambiasso J; Li Y; Maier SA; Cortés E
    Faraday Discuss; 2019 May; 214(0):73-87. PubMed ID: 30810127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging Catalytic Hotspots on Single Plasmonic Nanostructures via Correlated Super-Resolution and Electron Microscopy.
    Zou N; Chen G; Mao X; Shen H; Choudhary E; Zhou X; Chen P
    ACS Nano; 2018 Jun; 12(6):5570-5579. PubMed ID: 29860829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis.
    Elias RC; Linic S
    J Am Chem Soc; 2022 Nov; 144(43):19990-19998. PubMed ID: 36279510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Particle Approaches to Plasmon-Driven Catalysis.
    Hamans RF; Kamarudheen R; Baldi A
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction Pathway Dependence in Plasmonic Catalysis: Hydrogenation as a Model Molecular Transformation.
    Barbosa ECM; Fiorio JL; Mou T; Wang B; Rossi LM; Camargo PHC
    Chemistry; 2018 Aug; 24(47):12330-12339. PubMed ID: 29365214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Molecular Catalysis Identifying Activation Energy of the Intermediate Product and Rate-Limiting Step in Plasmonic Photocatalysis.
    Li W; Miao J; Peng T; Lv H; Wang JG; Li K; Zhu Y; Li D
    Nano Lett; 2020 Apr; 20(4):2507-2513. PubMed ID: 32182075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Shot Dual-Detection-Based Single-Molecule Super-Resolution Imaging Method for Real-Time Observation of Spatiotemporal Catalytic Activity Variations on the Plasmonic Gold Nanoparticle Surface.
    Cao Y; Lee D; Lee S; Lin JM; Kang SH
    Anal Chem; 2024 Feb; 96(5):1957-1964. PubMed ID: 38227936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Stepwise Synthetic Pathways toward Complex Plasmonic 2D and 3D Nanoframes for Generation of Electromagnetic Hot Zones in a Single Entity.
    Jung I; Kim J; Lee S; Park W; Park S
    Acc Chem Res; 2023 Feb; 56(3):270-283. PubMed ID: 36693060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-resolution imaging of interactions between molecules and plasmonic nanostructures.
    Willets KA
    Phys Chem Chem Phys; 2013 Apr; 15(15):5345-54. PubMed ID: 23321954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting plasmon-enhanced electrochemistry by
    Wang Y; Sang X; Wu F; Pang Y; Xu G; Yuan Y; Hsu HY; Niu W
    Nanoscale; 2023 Nov; 15(46):18901-18909. PubMed ID: 37975296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry.
    Keller EL; Kang H; Haynes CL; Frontiera RR
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40577-40584. PubMed ID: 30427654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.