These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37971988)

  • 21. The Chemical Potential of Plasmonic Excitations.
    Yu S; Jain PK
    Angew Chem Int Ed Engl; 2020 Jan; 59(5):2085-2088. PubMed ID: 31765516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper-Based Plasmonic Catalysis: Recent Advances and Future Perspectives.
    Xin Y; Yu K; Zhang L; Yang Y; Yuan H; Li H; Wang L; Zeng J
    Adv Mater; 2021 Aug; 33(32):e2008145. PubMed ID: 34050979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon-Driven Chemistry on Mono- and Bimetallic Nanostructures.
    Li Z; Kurouski D
    Acc Chem Res; 2021 May; 54(10):2477-2487. PubMed ID: 33908773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts.
    Zhou X; Andoy NM; Liu G; Choudhary E; Han KS; Shen H; Chen P
    Nat Nanotechnol; 2012 Feb; 7(4):237-41. PubMed ID: 22343380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects.
    Luo S; Ren X; Lin H; Song H; Ye J
    Chem Sci; 2021 Mar; 12(16):5701-5719. PubMed ID: 34168800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon-Driven Modulation of Reaction Pathways of Individual Pt-Modified Au Nanorods.
    Chen T; Tong F; Enderlein J; Zheng Z
    Nano Lett; 2020 May; 20(5):3326-3330. PubMed ID: 32315532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic Cavity-Catalysis by Standing Hot Carrier Waves.
    Lyu PT; Yin LX; Shen YT; Gao Z; Chen HY; Xu JJ; Kang B
    J Am Chem Soc; 2023 Aug; 145(34):18912-18919. PubMed ID: 37584625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Molecule Spectroscopy Reveals the Plasmon-Assisted Nanozyme Catalysis on AuNR@TiO
    Zuo L; King H; Hossain MA; Farhana F; Kist MM; Stratton RL; Chen J; Shen H
    Chem Biomed Imaging; 2023 Nov; 1(8):760-766. PubMed ID: 38037610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis.
    Aslam U; Chavez S; Linic S
    Nat Nanotechnol; 2017 Oct; 12(10):1000-1005. PubMed ID: 28737751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal-effect dominated plasmonic catalysis on silver nanoislands.
    Kong T; Kang B; Wang W; Deckert-Gaudig T; Zhang Z; Deckert V
    Nanoscale; 2024 Jun; 16(22):10745-10750. PubMed ID: 38738933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of Chemical Reaction Pathways by Light-Matter Coupling.
    Devasia D; Das A; Mohan V; Jain PK
    Annu Rev Phys Chem; 2021 Apr; 72():423-443. PubMed ID: 33481640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of Silver-Palladium Alloyed Nanoparticles for Plasmonic Catalysis under Visible-Light Illumination.
    Peiris E; Hanauer S; Knapas K; Camargo PHC
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32894264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic catalysis with designer nanoparticles.
    da Silva AGM; Rodrigues TS; Wang J; Camargo PHC
    Chem Commun (Camb); 2022 Feb; 58(13):2055-2074. PubMed ID: 35044391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Au@C/Pt core@shell/satellite supra-nanostructures: plasmonic antenna-reactor hybrid nanocatalysts.
    Wang Z; Wang H
    Nanoscale Adv; 2023 Oct; 5(20):5435-5448. PubMed ID: 37822901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon-enhanced photocatalysis using gold nanoparticles encapsulated in nanoscale molybdenum oxide shell.
    Tao Z; Feng J; Yang F; Zhang L; Shen H; Cheng Q; Liu L
    Nanotechnology; 2023 Feb; 34(15):. PubMed ID: 36652695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation Energies of Plasmonic Catalysts.
    Kim Y; Dumett Torres D; Jain PK
    Nano Lett; 2016 May; 16(5):3399-407. PubMed ID: 27064549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.