These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37972016)

  • 41. Changes in catecholamine levels and turnover rates in hypothalamic, vocal control, and auditory nuclei in male zebra finches during development.
    Harding CF; Barclay SR; Waterman SA
    J Neurobiol; 1998 Mar; 34(4):329-46. PubMed ID: 9514523
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control.
    Woolley SC; Kao MH
    Neuroscience; 2015 Jun; 296():39-47. PubMed ID: 25445191
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A lightweight, headphones-based system for manipulating auditory feedback in songbirds.
    Hoffmann LA; Kelly CW; Nicholson DA; Sober SJ
    J Vis Exp; 2012 Nov; (69):e50027. PubMed ID: 23222734
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic expression of cadherins regulates vocal development in a songbird.
    Matsunaga E; Suzuki K; Kato S; Kurotani T; Kobayashi K; Okanoya K
    PLoS One; 2011; 6(9):e25272. PubMed ID: 21949888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Androgens and isolation from adult tutors differentially affect the development of songbird neurons critical to vocal plasticity.
    Livingston FS; Mooney R
    J Neurophysiol; 2001 Jan; 85(1):34-42. PubMed ID: 11152703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of motivation and reward neural systems in vocal communication in songbirds.
    Riters LV
    Front Neuroendocrinol; 2012 Apr; 33(2):194-209. PubMed ID: 22569510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inter- and intra-specific differences in muscarinic acetylcholine receptor expression in the neural pathways for vocal learning in songbirds.
    Asogwa NC; Mori C; Sánchez-Valpuesta M; Hayase S; Wada K
    J Comp Neurol; 2018 Dec; 526(17):2856-2869. PubMed ID: 30198559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Social performance reveals unexpected vocal competency in young songbirds.
    Kojima S; Doupe AJ
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1687-92. PubMed ID: 21220335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Memory in the making: localized brain activation related to song learning in young songbirds.
    Gobes SM; Zandbergen MA; Bolhuis JJ
    Proc Biol Sci; 2010 Nov; 277(1698):3343-51. PubMed ID: 20534608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Long-term potentiation in an avian basal ganglia nucleus essential for vocal learning.
    Ding L; Perkel DJ
    J Neurosci; 2004 Jan; 24(2):488-94. PubMed ID: 14724247
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of neurons born and incorporated into a vocal control nucleus during avian song learning.
    Sohrabji F; Nordeen EJ; Nordeen KW
    Brain Res; 1993 Aug; 620(2):335-8. PubMed ID: 8369966
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dopaminergic Contributions to Vocal Learning.
    Hoffmann LA; Saravanan V; Wood AN; He L; Sober SJ
    J Neurosci; 2016 Feb; 36(7):2176-89. PubMed ID: 26888928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Social context-dependent singing alters molecular markers of dopaminergic and glutamatergic signaling in finch basal ganglia Area X.
    So LY; Munger SJ; Miller JE
    Behav Brain Res; 2019 Mar; 360():103-112. PubMed ID: 30521933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An associational model of birdsong sensorimotor learning I. Efference copy and the learning of song syllables.
    Troyer TW; Doupe AJ
    J Neurophysiol; 2000 Sep; 84(3):1204-23. PubMed ID: 10979996
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Afferents from vocal motor and respiratory effectors are recruited during vocal production in juvenile songbirds.
    Bottjer SW; To M
    J Neurosci; 2012 Aug; 32(32):10895-906. PubMed ID: 22875924
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circuits, hormones, and learning: vocal behavior in songbirds.
    Bottjer SW; Johnson F
    J Neurobiol; 1997 Nov; 33(5):602-18. PubMed ID: 9369462
    [TBL] [Abstract][Full Text] [Related]  

  • 57. miR-9 regulates basal ganglia-dependent developmental vocal learning and adult vocal performance in songbirds.
    Shi Z; Piccus Z; Zhang X; Yang H; Jarrell H; Ding Y; Teng Z; Tchernichovski O; Li X
    Elife; 2018 Jan; 7():. PubMed ID: 29345619
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dopamine neurons evaluate natural fluctuations in performance quality.
    Duffy A; Latimer KW; Goldberg JH; Fairhall AL; Gadagkar V
    Cell Rep; 2022 Mar; 38(13):110574. PubMed ID: 35354031
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Song- and order-selective neurons develop in the songbird anterior forebrain during vocal learning.
    Doupe AJ; Solis MM
    J Neurobiol; 1997 Nov; 33(5):694-709. PubMed ID: 9369467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.
    Lewandowski B; Vyssotski A; Hahnloser RH; Schmidt M
    J Physiol Paris; 2013 Jun; 107(3):178-92. PubMed ID: 23603062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.