These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37972285)

  • 1. Spatial Effect on the Performance of Carboxylate Anode Materials in Na-Ion Batteries.
    Huang J; Li S; Wang Y; Kim EY; Yang Z; Chen D; Cheng L; Luo C
    Small; 2024 Apr; 20(14):e2308113. PubMed ID: 37972285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halogenated Carboxylates as Organic Anodes for Stable and Sustainable Sodium-Ion Batteries.
    Huang J; Callender KIE; Qin K; Girgis M; Paige M; Yang Z; Clayborne AZ; Luo C
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40784-40792. PubMed ID: 36049020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Carbonyl and Azo-Based Polymer Cathode for Low-Temperature Na-Ion Batteries.
    Kim EY; Mohammadiroudbari M; Chen F; Yang Z; Luo C
    ACS Nano; 2024 Feb; 18(5):4159-4169. PubMed ID: 38264981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Superior Performance of Hard Carbon Anodes in Sodium-Ion Compared With Lithium- and Potassium-Ion Batteries.
    Guo Z; Xu Z; Xie F; Jiang J; Zheng K; Alabidun S; Crespo-Ribadeneyra M; Hu YS; Au H; Titirici MM
    Adv Mater; 2023 Oct; 35(42):e2304091. PubMed ID: 37501223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slope-Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Na-Ion Batteries.
    Qi Y; Lu Y; Ding F; Zhang Q; Li H; Huang X; Chen L; Hu YS
    Angew Chem Int Ed Engl; 2019 Mar; 58(13):4361-4365. PubMed ID: 30710402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D Electrides as Promising Anode Materials for Na-Ion Batteries from First-Principles Study.
    Hu J; Xu B; Yang SA; Guan S; Ouyang C; Yao Y
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24016-22. PubMed ID: 26461467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenylpyridine Dicarboxylate as Highly Efficient Organic Anode for Na-Ion Batteries.
    Jia K; Zhu L; Wu F
    ChemSusChem; 2021 Aug; 14(15):3124-3130. PubMed ID: 34076360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Conjugated Dicarboxylate Anode Materials for Electrochemical Cells.
    Ma C; Zhao X; Kang L; Wang KX; Chen JS; Zhang W; Liu J
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):8865-8870. PubMed ID: 29859011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Doped C@Zn
    Wang S; Zhang XB
    Adv Mater; 2019 Feb; 31(5):e1805432. PubMed ID: 30516851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading.
    He Y; Bai P; Gao S; Xu Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41380-41388. PubMed ID: 30403338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries.
    Yuan S; Wang S; Li L; Zhu YH; Zhang XB; Yan JM
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9178-84. PubMed ID: 26986821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Microwave-Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodium-Ion Batteries.
    Desai AV; Rainer DN; Pramanik A; Cabañero JM; Morris RE; Armstrong AR
    Small Methods; 2021 Dec; 5(12):e2101016. PubMed ID: 34928021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonyl-rich Poly(pyrene-4,5,9,10-tetraone Sulfide) as Anode Materials for High-Performance Li and Na-Ion Batteries.
    Li K; Xu S; Han D; Si Z; Wang HG
    Chem Asian J; 2021 Jul; 16(14):1973-1978. PubMed ID: 34057815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conjugated tetracarboxylate anode for stable and sustainable Na-ion batteries.
    Qin K; Holguin K; Mohammadiroudbari M; Luo C
    Chem Commun (Camb); 2021 Mar; 57(19):2360-2363. PubMed ID: 33533778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tin Sulfide-Based Nanohybrid for High-Performance Anode of Sodium-Ion Batteries.
    Choi J; Kim NR; Lim K; Ku K; Yoon HJ; Kang JG; Kang K; Braun PV; Jin HJ; Yun YS
    Small; 2017 Aug; 13(30):. PubMed ID: 28605126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.
    Luo C; Xu GL; Ji X; Hou S; Chen L; Wang F; Jiang J; Chen Z; Ren Y; Amine K; Wang C
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2879-2883. PubMed ID: 29378088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ether-Based Electrolyte Chemistry Towards High-Voltage and Long-Life Na-Ion Full Batteries.
    Liang HJ; Gu ZY; Zhao XX; Guo JZ; Yang JL; Li WH; Li B; Liu ZM; Li WL; Wu XL
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26837-26846. PubMed ID: 34636126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the Role of Fluorinated Alkyl Carbonate Additives in Improving Cathode Performance in Sodium-Ion Batteries.
    Nimkar A; Shpigel N; Malchik F; Bublil S; Fan T; Penki TR; Tsubery MN; Aurbach D
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46478-46487. PubMed ID: 34569238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical investigation of Janus Ti
    Wang Y; Xie L; Huang R; Yan S; Xie X; Zhang Q
    Phys Chem Chem Phys; 2024 Jul; 26(26):18394-18401. PubMed ID: 38912970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.