BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37972310)

  • 1. Comparative Assessment of Pose Prediction Accuracy in RNA-Ligand Docking.
    Agarwal R; T RR; Smith JC
    J Chem Inf Model; 2023 Dec; 63(23):7444-7452. PubMed ID: 37972310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity.
    Nguyen NT; Nguyen TH; Pham TNH; Huy NT; Bay MV; Pham MQ; Nam PC; Vu VV; Ngo ST
    J Chem Inf Model; 2020 Jan; 60(1):204-211. PubMed ID: 31887035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids.
    Ruiz-Carmona S; Alvarez-Garcia D; Foloppe N; Garmendia-Doval AB; Juhos S; Schmidtke P; Barril X; Hubbard RE; Morley SD
    PLoS Comput Biol; 2014 Apr; 10(4):e1003571. PubMed ID: 24722481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FlexAID: Revisiting Docking on Non-Native-Complex Structures.
    Gaudreault F; Najmanovich RJ
    J Chem Inf Model; 2015 Jul; 55(7):1323-36. PubMed ID: 26076070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Assessment of Docking Programs for Docking and Virtual Screening of Ribosomal Oxazolidinone Antibacterial Agents.
    Buckley ME; Ndukwe ARN; Nair PC; Rana S; Fairfull-Smith KE; Gandhi NS
    Antibiotics (Basel); 2023 Feb; 12(3):. PubMed ID: 36978331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Good Are Current Docking Programs at Nucleic Acid-Ligand Docking? A Comprehensive Evaluation.
    Jiang D; Zhao H; Du H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wu J; Hsieh CY; Hou T
    J Chem Theory Comput; 2023 Aug; 19(16):5633-5647. PubMed ID: 37480347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Molecular Docking Tools to Guide Targeted Drug Discovery of CD38 Inhibitors.
    Boittier ED; Tang YY; Buckley ME; Schuurs ZP; Richard DJ; Gandhi NS
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark.
    Gaillard T
    J Chem Inf Model; 2018 Aug; 58(8):1697-1706. PubMed ID: 29989806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set.
    Santos KB; Guedes IA; Karl ALM; Dardenne LE
    J Chem Inf Model; 2020 Feb; 60(2):667-683. PubMed ID: 31922754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.
    Feinstein WP; Brylinski M
    J Cheminform; 2015; 7():18. PubMed ID: 26082804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RmsdXNA: RMSD prediction of nucleic acid-ligand docking poses using machine-learning method.
    Tan LH; Kwoh CK; Mu Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38695120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein-Cyclic Peptide Complexes.
    Zhao H; Jiang D; Shen C; Zhang J; Zhang X; Wang X; Nie D; Hou T; Kang Y
    J Chem Inf Model; 2024 Mar; 64(6):2112-2124. PubMed ID: 38483249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving protein-ligand docking results using the Semiempirical quantum mechanics: testing on the PDBbind 2016 core set.
    Mohebbinia Z; Firouzi R; Karimi-Jafari MH
    J Biomol Struct Dyn; 2024 Jan; ():1-11. PubMed ID: 38165642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function.
    Wang Z; Zheng L; Wang S; Lin M; Wang Z; Kong AW; Mu Y; Wei Y; Li W
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FWAVina: A novel optimization algorithm for protein-ligand docking based on the fireworks algorithm.
    Li J; Song Y; Li F; Zhang H; Liu W
    Comput Biol Chem; 2020 Oct; 88():107363. PubMed ID: 32861160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fastDRH: a webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation.
    Wang Z; Pan H; Sun H; Kang Y; Liu H; Cao D; Hou T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Performance of Several Docking Programs at Reproducing Protein-Macrolide-Like Crystal Structures.
    Castro-Alvarez A; Costa AM; Vilarrasa J
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28106755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compromise in Docking Power of Liganded Crystal Structures of M
    Zajaček D; Dunárová A; Bucinsky L; Štekláč M
    J Chem Inf Model; 2024 Mar; 64(5):1628-1643. PubMed ID: 38408033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.