These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37972510)

  • 1. Contextually enhanced ES-dRNN with dynamic attention for short-term load forecasting.
    Smyl S; Dudek G; Pełka P
    Neural Netw; 2024 Jan; 169():660-672. PubMed ID: 37972510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ES-dRNN: A Hybrid Exponential Smoothing and Dilated Recurrent Neural Network Model for Short-Term Load Forecasting.
    Smyl S; Dudek G; Pelka P
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37651485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Load Forecasting Using a Dual-Stage Attention-Based Recurrent Neural Network.
    Ozcan A; Catal C; Kasif A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Residual Dilated LSTM and Exponential Smoothing Model for Midterm Electric Load Forecasting.
    Dudek G; Pelka P; Smyl S
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):2879-2891. PubMed ID: 33417572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent transform learning.
    Majumdar A; Gupta M
    Neural Netw; 2019 Oct; 118():271-279. PubMed ID: 31326661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Learning Framework for Smooth-Aided Machine-Learning-Based Backbone Traffic Forecasts.
    Hassan MK; Syed Ariffin SH; Ghazali NE; Hamad M; Hamdan M; Hamdi M; Hamam H; Khan S
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dilated Recurrent Neural Networks for Glucose Forecasting in Type 1 Diabetes.
    Zhu T; Li K; Chen J; Herrero P; Georgiou P
    J Healthc Inform Res; 2020 Sep; 4(3):308-324. PubMed ID: 35415447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Impulse Power Load Forecasting Based on Improved Recurrent Neural Networks.
    Feng C; Xu K; Ma H
    Comput Intell Neurosci; 2022; 2022():2784563. PubMed ID: 35502351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent neural network architecture for forecasting banana prices in Gujarat, India.
    Kumari P; Goswami V; N H; Pundir RS
    PLoS One; 2023; 18(6):e0275702. PubMed ID: 37319281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network.
    Sun L; Qin H; Przystupa K; Majka M; Kochan O
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid LSTM Self-Attention Mechanism Model for Forecasting the Reform of Scientific Research in Morocco.
    Fahim A; Tan Q; Mazzi M; Sahabuddin M; Naz B; Ullah Bazai S
    Comput Intell Neurosci; 2021; 2021():6689204. PubMed ID: 34122534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models.
    Adeyinka DA; Muhajarine N
    BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series Model.
    Lv J; Wang C; Gao W; Zhao Q
    Comput Intell Neurosci; 2021; 2021():8128879. PubMed ID: 34621309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of Emergency Department patient arrivals forecasting models by including meteorological and calendar information: A comparative study.
    Sudarshan VK; Brabrand M; Range TM; Wiil UK
    Comput Biol Med; 2021 Aug; 135():104541. PubMed ID: 34166880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series.
    Sagheer A; Hamdoun H; Youness H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Experimental Review on Deep Learning Architectures for Time Series Forecasting.
    Lara-Benítez P; Carranza-García M; Riquelme JC
    Int J Neural Syst; 2021 Mar; 31(3):2130001. PubMed ID: 33588711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Machine Learning Model Ensemble for Mixed Power Load Forecasting across Multiple Time Horizons.
    Giamarelos N; Papadimitrakis M; Stogiannos M; Zois EN; Livanos NI; Alexandridis A
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of environmental factors using AI and ML methods.
    Haq MA; Ahmed A; Khan I; Gyani J; Mohamed A; Attia EA; Mangan P; Pandi D
    Sci Rep; 2022 Aug; 12(1):13267. PubMed ID: 35918395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new automatic forecasting method based on a new input significancy test of a single multiplicative neuron model artificial neural network.
    Egrioglu E; Bas E
    Network; 2022; 33(1-2):1-16. PubMed ID: 35196948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.