These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 37972530)
1. Cold plasma within a stable supercavitation bubble - A breakthrough technology for efficient inactivation of viruses in water. Filipić A; Dobnik D; Gutiérrez-Aguirre I; Ravnikar M; Košir T; Baebler Š; Štern A; Žegura B; Petkovšek M; Dular M; Mozetič M; Zaplotnik R; Primc G Environ Int; 2023 Dec; 182():108285. PubMed ID: 37972530 [TBL] [Abstract][Full Text] [Related]
2. Cold Atmospheric Plasma as a Novel Method for Inactivation of Potato Virus Y in Water Samples. Filipić A; Primc G; Zaplotnik R; Mehle N; Gutierrez-Aguirre I; Ravnikar M; Mozetič M; Žel J; Dobnik D Food Environ Virol; 2019 Sep; 11(3):220-228. PubMed ID: 31037614 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of Pepper Mild Mottle Virus in Water by Cold Atmospheric Plasma. Filipić A; Dobnik D; Tušek Žnidarič M; Žegura B; Štern A; Primc G; Mozetič M; Ravnikar M; Žel J; Gutierrez Aguirre I Front Microbiol; 2021; 12():618209. PubMed ID: 33584622 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of Virus Inactivation by Cold Atmospheric-Pressure Plasma and Plasma-Activated Water. Guo L; Xu R; Gou L; Liu Z; Zhao Y; Liu D; Zhang L; Chen H; Kong MG Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29915117 [TBL] [Abstract][Full Text] [Related]
5. Cold Plasma, a New Hope in the Field of Virus Inactivation. Filipić A; Gutierrez-Aguirre I; Primc G; Mozetič M; Dobnik D Trends Biotechnol; 2020 Nov; 38(11):1278-1291. PubMed ID: 32418663 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of the enveloped virus phi6 with hydrodynamic cavitation. Zupanc M; Zevnik J; Filipić A; Gutierrez-Aguirre I; Ješelnik M; Košir T; Ortar J; Dular M; Petkovšek M Ultrason Sonochem; 2023 May; 95():106400. PubMed ID: 37060711 [TBL] [Abstract][Full Text] [Related]
7. Hydrodynamic cavitation efficiently inactivates potato virus Y in water. Filipić A; Lukežič T; Bačnik K; Ravnikar M; Ješelnik M; Košir T; Petkovšek M; Zupanc M; Dular M; Aguirre IG Ultrason Sonochem; 2022 Jan; 82():105898. PubMed ID: 34973580 [TBL] [Abstract][Full Text] [Related]
8. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation. Kosel J; Gutiérrez-Aguirre I; Rački N; Dreo T; Ravnikar M; Dular M Water Res; 2017 Nov; 124():465-471. PubMed ID: 28800517 [TBL] [Abstract][Full Text] [Related]
9. Inactivation efficacy and mechanism of pulsed corona discharge plasma on virus in water. Song K; Wang H; Jiao Z; Qu G; Chen W; Wang G; Wang T; Zhang Z; Ling F J Hazard Mater; 2022 Jan; 422():126906. PubMed ID: 34416696 [TBL] [Abstract][Full Text] [Related]
10. MS2 virus inactivation by atmospheric-pressure cold plasma using different gas carriers and power levels. Wu Y; Liang Y; Wei K; Li W; Yao M; Zhang J; Grinshpun SA Appl Environ Microbiol; 2015 Feb; 81(3):996-1002. PubMed ID: 25416775 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of human enteric virus surrogates by high-intensity ultrasound. Su X; Zivanovic S; D'Souza DH Foodborne Pathog Dis; 2010 Sep; 7(9):1055-61. PubMed ID: 20575674 [TBL] [Abstract][Full Text] [Related]
12. Review on inactivation of airborne viruses using non-thermal plasma technologies: from MS2 to coronavirus. Assadi I; Guesmi A; Baaloudj O; Zeghioud H; Elfalleh W; Benhammadi N; Khezami L; Assadi AA Environ Sci Pollut Res Int; 2022 Jan; 29(4):4880-4892. PubMed ID: 34796437 [TBL] [Abstract][Full Text] [Related]
13. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Lacombe A; Niemira BA; Gurtler JB; Sites J; Boyd G; Kingsley DH; Li X; Chen H Food Microbiol; 2017 May; 63():1-5. PubMed ID: 28040155 [TBL] [Abstract][Full Text] [Related]
14. In situ generation of cold atmospheric plasma-activated mist and its biocidal activity against surrogate viruses for COVID-19. Upadrasta A; Daniels S; Thompson TP; Gilmore B; Humphreys H J Appl Microbiol; 2023 Aug; 134(8):. PubMed ID: 37580171 [TBL] [Abstract][Full Text] [Related]
15. Low temperature MS2 (ATCC15597-B1) virus inactivation using a hot bubble column evaporator (HBCE). Garrido A; Pashley RM; Ninham BW Colloids Surf B Biointerfaces; 2017 Mar; 151():1-10. PubMed ID: 27930923 [TBL] [Abstract][Full Text] [Related]
16. Disinfection of bacteriophage MS2 by copper in water. Armstrong AM; Sobsey MD; Casanova LM Appl Microbiol Biotechnol; 2017 Sep; 101(18):6891-6897. PubMed ID: 28756591 [TBL] [Abstract][Full Text] [Related]
17. The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives. Kaushik N; Mitra S; Baek EJ; Nguyen LN; Bhartiya P; Kim JH; Choi EH; Kaushik NK J Adv Res; 2023 Jan; 43():59-71. PubMed ID: 36585115 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Virus Reduction by Ultrafiltration with Coagulation-Sedimentation in Water Reclamation. Lee S; Hata A; Yamashita N; Tanaka H Food Environ Virol; 2017 Dec; 9(4):453-463. PubMed ID: 28455611 [TBL] [Abstract][Full Text] [Related]
19. Suitability of pepper mild mottle virus as a human enteric virus surrogate for assessing the efficacy of thermal or free-chlorine disinfection processes by using infectivity assays and enhanced viability PCR. Shirasaki N; Matsushita T; Matsui Y; Koriki S Water Res; 2020 Nov; 186():116409. PubMed ID: 32942179 [TBL] [Abstract][Full Text] [Related]
20. UVC Inactivation of dsDNA and ssRNA Viruses in Water: UV Fluences and a qPCR-Based Approach to Evaluate Decay on Viral Infectivity. Calgua B; Carratalà A; Guerrero-Latorre L; de Abreu Corrêa A; Kohn T; Sommer R; Girones R Food Environ Virol; 2014 Dec; 6(4):260-8. PubMed ID: 24952878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]